
Appendix of GroupNet: Multiscale Hypergraph Neural Networks
for Trajectory Prediction with Relational Reasoning

1. The derivation of ELBO

In our modeling, we propose the ELBO of the log-
likelihood of the future trajectories conditioned on the his-
torical trajectories, log p(X+ | X−), as

log p(X+ | X−) ≥ Eq(Z|X+,X−) log p(X+ | Z,X−)
−KL(q(Z | X+,X−)‖p(Z | X−)),

Here we prove the derivation of the ELBO.

Proof 1 Let log p(X+ | X−) be the log-likelihood of the
future trajectories X+ conditioned on the past trajectories
X− and q(Z|X+,X−) be the approximate posterior of Z.
The derivation of the corresponding evidence lower bound
(ELBO) in Section 5 in the main text is:

log p(X+ | X−)
= Eq(Z|X+,X−)[log p(X+ | X−)]

= Eq(Z|X+,X−)[log
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p(Z | X+,X−)

]
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]
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)
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)
In this way, we obtain the ELBO that needs to be maxi-

mize.

2. Further experimental details
In this section, we provide further details of experiments,

which include dataset introduction, baseline approaches, im-
plementation details as well as the supplementary explana-
tion for the figure in the main text.

2.1. Datasets

2.1.1 Simulation dataset

Ability to capture group behaviors. In this simulation, we
have 6 particles in an x-y plane forming a three-particle
group connected by a Y-shape light bar, a two-particle group
connected by a spring and an individual particle without any
connection. Initially, the center of the Y-shape light bar, the
center of the spring and the individual particle are randomly
initialized on the area {(x, y)|x ∈ [−10, 10], y ∈ [−10, 10]}.
The distance between particles connected by the light bar
and the center of the light bar keeps the same, initializing
in the range [1, 3] and the three particles are uniformly dis-
tributed around the center of the light bar, keeping the angle
between two particles is 120◦. The translational velocity and
the angular velocity of the light bar are initialized ranging
in [0,

√
2] and [π/6, π/3], respectively. The two particles

connected by the spring will do the simple harmonic motion
because of Hooke’s law. The frequency of the simple har-
monic motion is randomly initialized ranging in [6, 20]. The
individual particle has a constant velocity initialized ranging
in [0,

√
2]. We predicted the particle states at the future 10

timestamps based on the observations of 10 timestamps and
generated 50k samples in total for training and testing.

Ability to reason interaction category. In this simula-
tion, we have 3 particles in an x-y plane forming one group
connected by a light bar, springs or nothing. Initially, the
center of the Y-shape light bar, the center of springs and
the individual particles are randomly initialized on the area
{(x, y)|x ∈ [−10, 10], y ∈ [−10, 10]}. In the type of ‘light
bar’, the distance between the center of the light bar and
any particle is initialized ranging in [1, 5]. The translational
velocity and the angular velocity of the light bar are initial-
ized ranging in [0,

√
2] and [π/10, π/3], respectively. In the

type of ‘spring’, three springs have the same initial length
initialized ranging in [1, 5] and particles’ angular velocity
is initialized ranging in [10, 30]. In the type of ‘free’, the
individual particle has a constant velocity initialized ranging
in [0,

√
2]. We predicted the particle states at the future 10

timestamps based on the observations of 10 timestamps and
generated 50k samples in total for training and testing.
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Ability to reason interaction strength. In this simu-
lation, we have 2 charged particles in an x-y plane. The
charged particles interact under Coulomb force:F = C ·
sign(q1 · q2) (r1−r2)

||r1−r2||3 , where C is a constant and q1, q2 is
the charged quantity r1, r2 is the position. One particle is
fixed at the origin point, carrying random initialized posi-
tively charged quantity ranging in [1, 15]. Another particle
has an initialized velocity v = (1,−1) with a fixed positive
charged quantity of 1. The constant C is set to be 0.05. The
large amount quantity the fixed particle carries, the large
repulsive force the moving particle receives, indicating a
larger interaction strength. We predicted the particle states
at the future 10 timestamps based on the observations of 10
timestamps and generated 5k samples in total for training
and testing.

2.1.2 NBA dataset

The NBA SportVU dataset contains player and ball trajec-
tories from the 2015-2016 NBA season collected with the
SportVU tracking system. The raw tracking data is in the
JSON format, and each moment includes information about
the identities of the players on the court, the identities of
the teams, the period, the game clock, and the shot clock.
Following the protocol in [8], we selected 50k samples in
total for training, validation and testing with a split of 65%,
10%, 25%. Each sample contains the historical 8 timestamps
(3.2s) and future 12 timestamps (4.8s).

2.1.3 SDD dataset

The Stanford Drone dataset (SDD) consists of 20 scenes cap-
tured using a drone in top-down view around the university
campus containing several moving agents like humans and
vehicles. The coordinates of multiple actors’ trajectories are
provided in pixels. we use 0.4s as the time interval, and use
the first 3.2 seconds (8 timestamps) to predict the following
4.8 seconds (12 timestamps). We use the standard test train
split as used in previous works [3,9,12] and include all agent
types (pedestrians, cyclists, vehicles).

2.1.4 ETH-UCY dataset

ETH-UCY dataset contains 5 subsets, ETH, HOTEL, UNIV,
ZARA1 and ZARA2. They consist of pedestrian trajectories
captured at 2.5Hz in multi-agent social scenarios. Following
the experimental setting in [3, 13], we split the trajectories
into segments of 8s, where we use 0.4s as the time inter-
val, and use the first 3.2 seconds (8 timestamps) to predict
the following 4.8 seconds (12 timestamps). We use the
leave-one-out approach, training on 4 sets and testing on the
remaining set.

2.2. Baseline methods

We compared the performance of our proposed approach
with the following baseline methods.

2.2.1 For Synthetic physical Simulations

• Corr.(path): The baseline method in [7] to calculate a
correlation matrix between all trajectories and using an ideal
threshold to judge whether particles having connections. It
is only used for 2-type interaction category recognition since
the limitation of thresholding methods.
• Corr.(LSTM): The baseline method in [7] to train a

two-layer LSTM with an MSE loss and apply the correlation
matrix procedure and threshold on the output of second
LSTM layers at the last time step. It is only used for 2-
type interaction category recognition since the limitation of
thresholding methods.
• NRI: The neural relational inference model [7] which

learns a static latent interaction graph. The inferred edge
types correspond to a clustering of the interactions.

2.2.2 For real-world datasets

• STGAT [5]: The model is a variant of graph atten-
tion network and captures the temporal interactions with an
additional LSTM.
• Social-STGCNN [10]: The model proposes a variant

of graph convolutional neural network and substitutes the
need of aggregation methods by modeling the interactions
as a graph.
• Social-Attention [14]: The model formulates the tra-

jectory sequence in a spatial-temporal graph to capture the
spatial and temporal dynamics.
• Social-LSTM [1]: The model encodes the trajectories

with an LSTM layer whose hidden states serve as the input
of a social pooling layer.
• Social-GAN [3]: The model leverages adversarial learn-

ing to fit the uncertain human behavior and pools the hidden
state with all the other actors involved in the scene.
• Trajectron++ [13]: The approach uses a graph-

structured recurrent model and a framework based on condi-
tional variational auto-encoder with the InfoVAE objective
function.
• NRI [7]: The neural relational inference model with

latent graph re-evaluation at each time step.
• EvolveGraph [8]: The generic framework with explicit

relational structure recognition via dynamic latent interaction
graphs among heterogeneous agents.
• PECNet [9]: The approach addresses human trajectory

prediction by modeling intermediate stochastic goals of end-
points. It uses a novel self-attention based social pooling
layer to model the interactions.



• CF-VAE [2]: The approach based on conditional nor-
malizing flow based priors in order to model complex multi-
modal conditional distributions over sequences.
• SOPHIE [12]: The model proposes a GAN employing

attention on social and physical constraints discriminatively
considering the impact of other actors to produce human-like
motion.
• STAR [15]: The model uses a spatio-temporal graph

transformer framework tackling trajectory prediction by only
attention mechanisms within the core of transformer-based
graph convolution mechanism.
• NMMP [4]: The model uses neural motion message

passing infers an interaction graph from agents’ trajectories
and learns representations for directed interactions between
actors.

2.3. Implementation Details

We implement our method with Pytorch [11] deep learn-
ing frameworks and the model are trained on a single
NVIDIA 3090-TI GPU. We clip the maximum value of
the KL divergence down to 2. For NBA dataset, the di-
mension of the agent feature and the interaction feature at a
single scale is d = 16, the dimension of the latent code Z is
dz = 16. For SDD and ETH-UCY dataset, the dimension of
the agent feature and the interaction feature at a single scale
is d = 64, the dimension of the latent code Z is dz = 64. For
ETH-UCY dataset, we use a learnable latent code distribu-
tion N (µq, σq) to replace the standard Gaussian distribution
N (0, I). The µq and σq are learned from the agent past
features V− through MLPs. The structure details of feature
extraction modules and prediction modules in the system are
listed below:
• Fµ : A four-layer MLP with hidden dimensions of

[512, 256] with ReLU non-linearity function.
• Fσ : A four-layer MLP with hidden dimensions of

[512, 256] with ReLU non-linearity function.
• GRU in residual block: A one-layer GRU with hidden

dimensions of 96.
•MLP in residual block: A four-layer MLP with hidden

dimensions of [512, 256] with ReLU non-linearity function.
For the synthetic simulation dataset, we use Adam opti-

mizer [6] with the learning rate of 0.001 for 100 epochs. We
use two GroupNet one for obtaining the latent distribution
and one for obtaining the past feature concatenated with la-
tent code Z. We use the latter to do the relational reasoning.
For the validation of capturing group behaviors, we set the
interaction category number to be 2 and the scales to be 2 and
3 particles. For the validation of the reasoning interaction
category, we set the interaction category number to be 3 and
the scales to be 3 particles. For the validation of reasoning
interaction strength, we set the interaction category number
to be 1 and the scales to be 2 particles. For the real-world
datasets, we use Adam optimizer with the initial learning

Figure 1. The entry-wise matrix norm changing with the group size
based on two optimization algorithms, 1) the enumeration method
and 2) the greedy approximation, for the hyperedge forming.

Table 1. Performance of different solving methods for hyperedge
forming on the NBA dataset. We report minADE20 / minFDE20

(Meters).

Prediction time
Solving method 1.0s 2.0s 3.0s 4.0s

Enumeration 0.35/0.48 0.63/0.95 0.88/1.31 1.13/1.70
Greedy 0.34/0.48 0.62/0.95 0.87/1.31 1.13/1.69

Table 2. Ablation studies of different iteration numbers in the
hyperedge neural message passing on the NBA dataset. We report
minADE20 / minFDE20 (Meters).

Prediction time
Iteration 1.0s 2.0s 3.0s 4.0s

1 0.35/0.49 0.62/0.95 0.88/1.32 1.13/1.70
2 0.34/0.48 0.62/0.95 0.87/1.31 1.13/1.69
3 0.35/0.49 0.62/0.95 0.88/1.31 1.13/1.69
4 0.35/0.49 0.62/0.95 0.87/1.30 1.13/1.71

rate of 0.001 and decay 1/10 per 10 epochs. For the ETH-
UCY dataset, we consider a maximum neighbouring agent
number of 8. When we apply the GroupNet into previous
frameworks, we follow the original training strategy.

3. Further Quantitative Results
3.1. Greedy approximation in the hyperedge form-

ing

We compare the two methods for solving the optimization
problem in (2) in our main text: the enumeration algorithm to
search for the optimum solution and a greedy approximation
algorithm that adding new nodes sequentially by maximizing
entry-wise matrix norm greedily. To see the performance
gap between the two methods, Figure 1 compares the entry-
wise matrix norm as a function of node selection with two
algorithms on the NBA dataset. We see that the greedy
approximation has a close hyperedge forming performance
with the enumeration algorithm in maximizing entry-wise
matrix norm values. Table 1 shows the comparison of the
prediction result of two algorithms on NBA datasets. We
see that two algorithms have similar performance thus we



Figure 2. The visualization result of captured group behaviors of 5-player groups on the NBA dataset. The group is presented by the red
dotted line. Players in the different teams are colored in red and blue, respectively; besides, the ball is colored in green. Players outside the
group are colored in gray.

Strength:0.88 Strength:0.83 Strength:0.61

(a)

Strength:0.88 Strength:0.83 Strength:0.61

(b)

Strength:0.88 Strength:0.83 Strength:0.61

(c)

Figure 3. Group behaviors under the same neural interaction category but different neural interaction strength. Players in the different teams
are colored in red and blue, respectively; besides, the ball is colored in green. Players outside the group are colored in gray. Specifically, in
(c) players in the group are in the rectangle and we color the ball additionally for better understanding.

Figure 4. Close group-wise interaction embeddings in the feature domain lead to similar group behaviors in the spatial domain. Each of
orange dot and yellow dot represents an interaction and corresponds to one spatial plot in the left or right columns. Players in the different
teams are colored in red and blue, respectively and players outside the group are colored in gray.

choose the greedy algorithm as an approximation method to
solve the optimization problem (2) in our main text when
the total number of agents is large.

3.2. Effects of iteration numbers

Table 2 shows the effects of different iteration numbers
for which the hypergraph neural message passing is executed.
We see that different iteration numbers have close perfor-
mance in general and a moderate iteration number achieves
the best results.

4. Further Qualitative Results

Here we present more qualitative results on the real-world
NBA dataset to reflect the group behavior, neural interac-
tion intensity and interaction embedding on the real-world
scenario.

4.1. Visualization of group behavior

Figure 2 shows three examples of our learnt hyperedges at
the group size of five players. In the captured group, players
in the different teams are colored in red and blue, respec-



tively; besides, the ball is colored in green. Players outside
the group are colored in gray. We use dotted lines represent-
ing hyperedges. We see that our method could qualitatively
capture both short-range and long-range group interactions,
including behaviors of confrontation and chasing the ball.

4.2. Visualization of neural interaction strength

Figure 3 presents different group interactions under the
same neural interaction category but different neural interac-
tion strength. Figure 3(a)(b)(c) gives three examples of con-
frontation on the restricted area near the basket, confronta-
tion close to the painted area and confrontation of waiting
for the ball, indicating a high to low interaction strength. We
see that the more fierce confrontation among the 5 players
happens, the higher neural interaction strength is, indicating
our MS-HGNN captures the interaction strength matching
with human intuition.

4.3. Visualization of interaction embedding

Figure 4 shows the visualization of group interactions in
the embedding space and the corresponding groups in the
spatial domain in the NBA dataset. The hyperedge embed-
ding ei is mapped to 2D coordinates via t-SNE and shown
in the middle column. We randomly pick two pairs of close
interaction samples representing the five-player groups in
the embedding space, which are colored orange and yellow,
and plot the corresponding trajectories of group members
in the left and right columns. The lighter color denotes the
more previous timestamps and the blue/red color denotes
two teams’ players. The irrelevant players not containing
in the hyperedge are colored in gray. We see that (i) close
group-wise interaction embeddings in the embedding do-
main lead to similar group behaviors in the spatial domain.
For example, in the left column, players are running through
the half court; and (ii) far-away group-wise interaction em-
beddings in the embedding domain reflect the corresponding
group behaviors are clearly different in the spatial domain.
For example, both orange dots represent the group behavior
of running through the half court and both yellow dots repre-
sent the group behavior of laying-up and defense; while two
orange dots are far from two yellow dots.
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