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1. Implementation Details

1.1. Architecture

The architecture of GroupViT is based on ViT-S [7, 14]
with 12 Transformer layers. Each layer consists of a multi-
head self-attention block and an MLP block. The input to
each block is normalized by layer normalization [1]. We
connect the group tokens in the different grouping stages
via MLP-Mixer layers [13]. Our text-encoder consists of 12
Transformer layers, each with a hidden dimension of 256.
Following [10], the Transformer operates on a lower-cased
byte pair encoding (BPE) representation of the text with a
vocabulary of 49,152 words.

1.2. Fully-Supervised Transfer to Semantic Seg-
mentation

To implement the baselines for fully-supervised trans-
fer to semantic segmentation, we fine-tune the pre-trained
ViT model jointly with a 1×1 convolutional layer appended
to it for pixel-wise classification. We scale each input im-
age by a randomly selected factor in the range of [0.5, 2]
and then crop random 224×224 patches from each im-
age during training. We use the Adam [8] optimizer with
a weight decay of 0.05 and a learning rate 0.001. We
train all models for 4k iterations with a batch size of 16.
During inference, we resize each input image to have a
shorter side of size 448 pixels. We open-source our code
at https://github.com/NVlabs/GroupViT.

2. Qualitative Results

PASCAL VOC 2012 We show additional qualitative re-
sults of GroupViT on the PASCAL VOC 2012 dataset, i.e.
examples with a single object in Fig. 2; multiple objects
from the same category in Fig. 3; and multiple objects from
different categories in Fig. 4. Observe that GroupViT suc-
cessfully groups and correctly classifies the objects in these
various challenging scenarios.

*Jiarui Xu was an intern at NVIDIA during the project.
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Figure 1. Concepts Learnt by Group Tokens.. We highlight the
regions that group tokens attend to in different stages.

PASCAL Context We show more qualitative results of
GroupViT on the PASCAL Context dataset in Fig. 5. The
PASCAL Context dataset annotates not only object classes
from PASCAL VOC 2012, e.g. car and dog, but also
stuff classes related to the context, e.g. sky and water.
Observe that GroupViT successfully segments object and
stuff classes in the PASCAL Context dataset, e.g., cat and
window in the second row, and dog and water in the
sixth row.

3. Additional Experiments and Analysis

Concepts Learnt by Group Tokens We visualize what
the group tokens learn in Fig. 1. We select some group
tokens and highlight their attended regions across images
from the PASCAL VOC 2012 dataset. We find that the dif-
ferent group tokens learn different semantic concepts. In
the first stage, group tokens usually focus on mid-level con-
cepts such as “eyes” (row 1) and “limbs”(row 2). Interest-
ingly, the group token 36 attends to “hands” if people are in
the image, while focusing on “feet” if animals like bird and
dog are present. Group tokens in the second stage are more
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Figure 2. Qualitative Results of GroupViT on PASCAL VOC 2012. The results in columns labeled “Stage 1/2” show grouping results
prior to assigning labels, where the regions belonging to the same group are indicated by the same color. All these examples contain a
single object from a category.
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Figure 3. Qualitative Results of GroupViT on PASCAL VOC 2012. The results in columns labeled “Stage 1/2” show grouping results
prior to assigning labels. The regions belonging to the same group are indicated by the same color. These examples contain multiple
objects from the same category.
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Figure 4. Qualitative Results of GroupViT on PASCAL VOC 2012. The results in columns labeled “Stage 1/2” show grouping results
prior to assigning labels, where the regions belong to the same group are in the same color. These examples contain multiple objects from
multiple different categories.

associated with high-level concepts, e.g., “grass”, “body”
and “face”. Fig. 1 also shows that the learnt concepts in the
first stage could be aggregated into higher level concepts in
the second stage.

3.1. Image Classification

We compare the performances of the GroupViT and ViT
architectures for the task of object classification on Ima-
geNet. Following CLIP [10], here we train both architec-
tures using supervision from text only via an image-text
contrastive loss. In Table 1, we report both the zero-shot and
the linear probing accuracy on the ImageNet [5] validation
split. The zero-shot and linear probing evaluation follow
the same setting as CLIP [10]. GroupViT’s ImageNet clas-
sification performance is comparable to (if not better than)
that of ViT, thus demonstrating that our proposed grouping
mechanism enhances the baseline ViT architecture with the
capability to perform semantic pixel grouping and zero-shot
transfer to semantic segmentation, without affecting its ob-
ject classification performance.

model zero-shot Acc@1 linear Acc@1
ViT 42.4 69.2

GroupViT 42.9 69.8

Table 1. ImageNet Accuracy.

3.2. Mask Probing

We follow the procedure outlined in DINO [2] to eval-
uate the quality of the masks generated by GroupViT and
by the baseline ViT model pre-trained using prior methods
in a fully supervised [14], self-supervised [2, 4] or text-
supervised [10] manner. For the ViT models, similar to
DINO [2] for each final attention head, we compute its sim-
ilarity to the [CLS] token and derive an attention mask for
the pixels with the highest attention values. We then com-
pute the Jaccard similarity of each head’s attention mask to
the ground truth mask and retain the attention mask with
the highest similarity. As for GroupViT, it does not have
a multi-head design in the Grouping Block. Thus, we di-
rectly select the group most similar to the ground truth, as
measured by the Jaccard index for each image. As Table 2
shows, the mask probing result of GroupViT is significantly
better than that of all variants of the baseline ViT architec-
ture. Hence, compared to ViT, our GroupViT more effec-
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Figure 5. Qualitative Results of GroupViT on PASCAL Context. Columns labeled “Stage 1/2” show grouping results prior to assigning
labels, where the regions belonging to the same group are indicated by the same color. GroupViT can successfully segment object and stuff
classes, e.g. cat and window in row 2, dog and water in row 6.



arch model dataset supervision Jaccard
Similarity

ViT Random VOC - 23.6
ViT DeiT [14] ImageNet class 24.6
ViT MoCo [4] ImageNet self 28.2
ViT DINO [2] ImageNet self 45.9
ViT DINO [2] CC+YFCC self 41.8
ViT CLIP [10] CC+YFCC text 28.6

GroupViT Ours CC+YFCC text 51.8

Table 2. Comparison of mask probing performance GroupViT
outperforms all other variants of the baseline ViT architecture at
effectively grouping image regions on semantic groups.

tively groups semantically-related visual inputs together.

3.3. Limitations

We find that the mIoU of GroupViT on PASCAL Con-
text is significantly lower than that on PASCAL VOC 2012.
This could be attributed to the presence of background
classes in PASCAL Context, e.g., ground, road and
wall that result in low IoU (∼1.5) on zero-shot transfer-
ring GroupViT to semantic segmentation on PASCAL Con-
text. Through visual inspection, we find that while the pix-
els belonging to these background classes are typically cor-
rectly grouped into a single group by GroupViT, the group
as a whole may be miss-classified into the wrong class on
being compared to the text embedding of the various class
labels. We hypothesize that this, in turn, happens due to
the low probability of the background classes being de-
scribed in textual sentences used during training. We show
examples of such failure case in Fig. 6. We further con-
duct an oracle experiment to verify this finding. In the or-
acle experiment, for each output group from GroupViT, we
compute its IoU with all ground truth masks and assign to
each group the class label that results in the the maximum
IoU. This represents the upper bound of GroupViT’s per-
formance since here we leverage ground truth masks to pre-
dict each group’s class label. We use our 2-stage GroupViT
trained on the CC and YFCC datasets for this oracle ex-
periment, which is the same model labeled ”Ours” in Ta-
ble 5 of the main paper. We report the oracle experiment’s
results on PASCAL Context in Table 3. The large gap
between the performance of the original and oracle mIoU
values on the PASCAL Context dataset, shows that while
GroupViT’s grouping results are reasonably good, there is
room to further improve the groups’ classification to seg-
mentation class labels via image-text embedding similarity
computation.

arch mask mIoU oracle
mask mIoU

GroupViT 22.4 54.6

Table 3. Original versus oracle results on PASCAL Context.

3.4. COCO Dataset

We evaluate the performance of GroupViT on the COCO
dataset [9], which contains 80 object classes. We combine
the instance masks of the same category to get the semantic
segmentation masks for each image. We report semantic
segmentation mIoU on COCO in Table 4. It demonstrates
that GroupViT is able to transfer to complex datasets with
various number of classes.

arch mask mIoU
GroupViT 24.3

Table 4. Results on COCO Dataset.

3.5. Training on RedCaps

To show that our approach is generalizable to other train-
ing datasets, besides CC [3, 11] and filtered YFCC [12],
we also train GroupViT on the recently released RedCaps
dataset [6], which contains 12 millions image-text pairs
from Reddit, of similar size as filtered YFCC. We report
mIoU for zero-shot transfer to various image segmenta-
tion benchmarks datasets in Table 5. Replacing YFCC
with RedCaps yields similar accuracy on Pascal VOC, Pas-
cal Context and COCO datasets. It demonstrates that
GroupViT is able to learn grouping with properly filtered
image text pairs.

arch Training
Dataset

PASCAL
VOC

PASCAL
Context COCO

GroupViT CC+YFCC 52.3 22.4 24.3
GroupViT CC+RedCaps 50.8 23.7 27.5

Table 5. Results trained with CC+RedCaps.
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Figure 6. Failure cases on PASCAL Context. “Oracle” shows the results of assigning groups to segmentation classes based on their
IoU with the ground truth masks. Although GroupViT successfully groups stuff classes, e.g. ground, road and wall, it is not able to
classify them correctly using the similarity between the visual and text embedding.
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