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In this appendix, we provide details, results and discus-
sions omitted in the main text:

• Appendix A: additional implementation details of 1)
H2FA R-CNN, 2) several baselines, and 3) our re-
implemented CDWSOD method [9].

• Appendix B: additional experimental results, includ-
ing 1) more detailed ablation study results, 2) more
detailed comparison on similar domains, 3) more de-
tailed benchmark results with different backbones, 4)
loss weight sensitivity analysis, and 5) analysis on the
selected regions by image-level recognition path.

• Appendix C: additional discussions, including: 1) the
relationship between the image-level recognition path
and WSDDN [2], 2) the intuition of the softmax along
column, and 3) discussion on high-than-oracle results
on several classes.

• Appendix D: additional visualizations, including 1)
more detailed distribution visualization and 2) detec-
tion example visualization.

A. Additional Implementation Details
H2FA R-CNN. The pseudocode for the Instance- and
Image-level Recognition (IIR) unit is shown in Algorithm 1.
Since image-level annotations cannot provide effective spa-
tial regularization for bounding-box regression, the regres-
sors in RPN and detection head are trained with only
source-domain data.

Our proposed method is implemented and evaluated
using Detectron2 [17] and PaddleDetection [1].
Widely used Faster R-CNN [10] with RoIAlign [6] is used
as our base framwork. ImageNet [4] pre-trained ResNet-
101 [7] is utilized as our network backbone in all exper-
iments, unless otherwise specified. We use ResNet DC5
backbone variant by default, since of it achieves superior
detection performance in most cases with faster training and
inference speed, compared with the C4 counterpart. We use

*Work done during an internship at Baidu Research.

Algorithm 1 Pseudocode of IIR unit, PyTorch-like

# feat: backbone features
# cls: classification logits
# obj: objectness logits
# target_domain: domain labels

obj, proposal = rpn(feat)
cls = det_head(feat, proposal)

if target_domain is True: # image-level recognition
# exclude background class
cls = cls[:, :-1]

# objectness assignment
idx = cls.argmax(dim=1)
cls_obj = zeros_like(cls).scatter_(

dim=1, index=idx, src=obj
)

# covert to image-level prediction, Eqn. (2)
p = F_agg(cls, cls_obj)

L = bce_loss(p, img_label)
else: # instance-level recognition

L_rpn = bce_loss(sigmoid(obj), rpn_label)
L_det = ce_loss(softmax(cls), det_label)
L = L_rpn + L_det

Notes: The regression losses are omitted for clarity.

the VOC-standard AP (i.e., IoU threshold is 50%) as evalu-
ation metric.

Most training hyper-parameters are following the default
configs of Faster R-CNN [10] in Detectron2. We use a
mini-batch size of 8 (4 images per domain) in 2 NVIDIA
V100 GPUs, and an initial learning rate is set to 0.005. The
stochastic gradient descent (SGD) is utilized as the opti-
mizer with a weight decay of 0.0001 and a momentum of
0.9.

For the Clipartall, Cliparttest, Watercolor and Comic
benchmarks [9], the trainval splits of PASCAL VOC
0712 [5] are used as source domain. Thus, we follow the
default configs of Detectron2 for training Faster R-CNN
on PASCAL VOC. The image scale is [480, 800] pixels dur-
ing training and 800 during inference. For the Clipart1kall,
we train for 36k iterations with the learning rate multiplied
by 0.1 at 24k and 32k iterations. For the rest three data
splits, we train for 24k iterations with the learning rate mul-



tiplied by 0.1 at 16k and 21.5k iterations.
For the noisy data setting, the extra splits of Water-

color and Comic provide additional ∼15.8k and ∼50.8k
training images with noisy image-level annotations. There-
fore, we enlarge the training iteration steps compared with
original Watercolor and Comic benchmark. For the two
noisy datasets, we train for 36k iterations with the learn-
ing rate multiplied by 0.1 at 24k and 32k iterations. Other
hyper-parameters are the same as in original Watercolor and
Comic benchmark.

For the similar domain adaptation setting (i.e., from
Cityscapes [3] to Foggy Cityscapes [12]), we follow the de-
faults configs of Detectron2 for training Faster R-CNN
on Cityscapes. We train with image scale (shorter side) ran-
domly sampled from [800, 1024], which reduces overfit-
ting; inference is on a single scale of 1024 pixels. We train
for 24k iterations with the learning rate multiplied by 0.1 at
18k iterations.

Source-only and oracle models. The source-only and
oracle models are trained with the default configs in
Detectron2. The mini-batch size is set to 8 to fit in GPU
memory. Accordingly, we adjust the initial learning rate
to 0.01. The rest of the hyper-parameters (e.g., optimizer,
training iterations, training scales) are identical to that for
H2FA R-CNN training. The source-only models are trained
with instance-level labeled source domain. The oracle mod-
els are trained on the combination of instance-level labeled
source and target domains, except for the oracle models for
Foggy Cityscapes which are trained on only target domain
as in previous UDAOD works.

Reproducing related methods. We re-implement a recent
open-source CDWSOD method [9] in Detectron2. The
re-implemented DT+PL [9] uses Faster R-CNN framework
with ResNet-101 backbone as in our method. The mini-
batch size is set to 8 to fit in GPU memory. The DT+PL is
first trained on source domain for warming up, which shares
the same training configs with the source-only models. As
in [9], we then finetune detectors for one epoch and 10k
iterations using the images obtained by DT (i.e., domain
transfer via a CycleGAN [19]) and PL (i.e., pseudo label
generation). The learning rate for detector finetuning is set
to 0.0001.

B. Additional Experimental Results

Full results for ablation study. Table B.1 summarizes the
more detailed ablation study results. The top block re-
ports the effectiveness of each feature alignment in H2FA
R-CNN, when they are applied solely. Experimental re-
sults show all alignments improves the detection perfor-
mance, except for A4 slight decrease the performance on
Cliparttest.

A1 A2 A3 A4 Clipartall Cliparttest Watercolor Comic
(a) 29.2 29.5 41.4 19.9
(b) ✓ 37.1 (+7.9) 39.5 (+10.0) 49.6 (+8.2) 33.3 (+13.4)

(c) ✓ 39.0 (+9.8) 33.0 (+3.5) 53.8 (+12.4) 31.8 (+11.9)

(d) ✓ 50.8 (+21.6) 39.2 (+9.7) 42.0 (+0.6) 27.1 (+7.2)

(e) ✓ 30.8 (+1.6) 27.3 (-2.2) 53.4 (+12.0) 34.5 (+14.6)

(f) ✓ ✓ 48.0 (+18.8) 44.2 (+14.7) 53.3 (+11.9) 39.6 (+19.7)

(g) ✓ ✓ ✓ 63.1 (+33.9) 50.3 (+20.8) 49.3 (+7.9) 41.6 (+21.7)

(h) ✓ ✓ ✓ 63.3 (+34.1) 47.8 (+18.3) 58.1 (+16.7) 44.6 (+24.7)

(i) ✓ ✓ 59.1 (+29.9) 37.8 (+8.3) 55.0 (+13.6) 38.3 (+18.4)

(j) ✓ ✓ ✓ 48.7 (+19.5) 35.3 (+5.8) 53.8 (+12.4) 37.8 (+17.9)

(k) ✓ ✓ ✓ 68.3 (+39.1) 50.0 (+20.5) 56.5 (+15.1) 44.2 (+24.3)

(l) ✓ ✓ ✓ ✓ 69.8 (+40.6) 55.3 (+25.8) 59.9 (+18.5) 46.4 (+26.5)

Table B.1. Effectiveness of different feature alignments in H2FA
R-CNN, where mean AP performance (%) over all classes is re-
ported. A1-A4 denote the four different types of feature align-
ments from bottom to top, where A1 and A2 are image-level align-
ments and A3 and A4 are instance-level alignments.

prsn rider car truck bus train mcycl bcycl mean
source-only 34.9 41.8 44.1 14.1 27.3 9.1 31.6 41.4 30.5
EPM [8] 41.5 43.6 57.1 29.4 44.9 39.7 29.0 36.1 40.2
FRCN w/ rot [14] 45.8 51.0 63.1 26.8 47.1 23.6 30.6 43.6 41.5
IIOD [15] 32.8 44.4 49.6 33.0 46.1 38.0 29.9 35.3 38.6
KTNet [13] 43.0 42.7 60.0 32.3 46.6 38.4 31.2 38.2 41.5
DT+PL [9] 44.3 53.6 62.0 26.7 51.5 19.4 33.3 48.0 42.4
H2FA R-CNN 47.4 50.3 63.8 38.7 53.5 39.6 37.4 48.2 47.4
oracle 54.0 58.1 69.3 42.0 61.4 56.2 44.7 49.7 54.4

Table B.2. Mean AP performance (%) on Foggy Cityscapes with
ResNet-101 backbone.

The second block summarizes the detection performance
when coarse image-level alignments (A1 and A2) are im-
posed. After the coarse alignments are used, introducing
fine-grained feature alignments (A3 or A4) consistently im-
proves the detection performance. The third block shows
the detection performance when fine instance-level align-
ments (A3 and A4) are applied. After introducing the most
coarse-grained feature alignment (A1), detectors achieve
significant improvement.

The bottom block shows the performance of H2FA R-
CNN comprised of holistic feature alignments. When
all alignments are imposed, extensive improvement is ob-
tained. Remarkably, on Clipartall, H2FA R-CNN boosts
the source-only baseline from 29.2% mAP to 69.8%.

Detailed results on similar domains. The full results
for similar domain adaptation (from Cityscapes to Foggy
Cityscapes) are reported in Table B.2. The state-of-the-art
UDAOD methods [8,13–15] significantly improves source-
only baseline by a large margin. The CDWSOD methods
(i.e., DT+PL [9] and H2FA R-CNN) surpass all previous
UDAOD methods. H2FA R-CNN achieves the highest per-
formance on 6 out of 8 classes, and obtains 47.4% overall
mAP, exceeding the second place DT+PL [9] by 5.0%.

Benchmark results with different backbones. Table B.3
summarizes the comparison with five different backbones
on five benchmarks. Concretely, we report the overall
mAP of our H2FA R-CNN, source-only, and fully super-
vised oracle models. As shown in Table B.3, H2FA R-CNN



backbone VOC→Clipartall VOC→Cliparttest VOC→Watercolor VOC→Comic Cityscapes→Foggy Cityscapes
source H2FA R-CNN source H2FA R-CNN oracle source H2FA R-CNN oracle source H2FA R-CNN oracle source H2FA R-CNN oracle†

VGG16 23.6 60.3 (+36.7) 23.9 40.5 (+16.6) 48.0 37.6 48.6 (+11.0) 51.8 20.5 39.8 (+19.3) 45.6 17.3 45.0 (+27.7) 48.9
R50-DC5 27.3 68.6 (+41.3) 28.5 50.2 (+21.7) 56.3 41.3 55.2 (+13.9) 60.2 19.3 42.8 (+23.5) 50.0 29.9 46.2 (+16.3) 53.4
R101-C4 27.0 66.6 (+39.6) 27.7 51.2 (+23.5) 58.5 42.8 57.2 (+14.4) 60.1 20.1 41.5 (+21.4) 57.6 26.2 48.9 (+22.7) 54.4
R101-DC5 29.2 69.8 (+40.6) 29.5 55.6 (+26.1) 59.3 41.4 59.9 (+18.5) 59.9 19.9 46.4 (+26.5) 53.7 30.5 47.4 (+16.9) 54.4
X101-DC5 25.9 73.6 (+47.7) 27.1 53.9 (+26.8) 59.6 45.2 59.8 (+14.6) 60.6 19.7 46.6 (+26.9) 54.2 30.2 49.2 (+19.0) 54.8

Table B.3. Benchmark results with different backbones. Mean AP performance (%) over all classes is reported. † denotes oracle models
are trained only on the instance-level labeled target domain.
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Figure B.1. Influence of different loss weights on four datasets,
where mean AP performance (%) over all classes is reported.

achieves consistent and considerable performance improve-
ment compared with source-only baseline. Compared with
ResNet-101 C4 variant, ResNet-101 DC5 obtains higher
performance on 4 out of 5 benchmarks. In addition, for
detectors with the C4 variant, significantly more time con-
sumption (∼ 2×) is required for model training. We use the
DC5-variant backbones in all other experiments.

Loss weight sensitivity analysis. There are five loss terms
in the overall loss function L for an end-to-end optimiza-
tion. We maintain the standard 1:1 weights for the detection
losses (i.e., Lrpn and Ldet) as in Faster R-CNN [10]. Follow-
ing common practice [11, 16, 18], we set the weight for Ldc

to 1. The 0.1 and 1 weights for Lic and Lcls are empirically
set. We analyze the impact of the last two weights, and
find that our method has some robustness on their setting,
as shown in Figure B.1. We use the same loss weights for
all target domains in our experiments.

Clipartall Cliparttest Watercolor Comic
source-only 45.4 46.6 58.8 31.3
+ img-level recog. path 72.1 64.9 69.8 59.5
H2FA R-CNN 79.5 80.1 73.1 58.1

Table B.4. CorLoc performance (%) on target-domain training
data. After introducing instance-level alignments via image-level
recognition path, CorLoc scores increase significantly, indicating
the selected regions usually have high overlaps with ground-truths.

Which regions are selected by the image-level recogni-
tion path. In order to better understand how the image-
level recognition path helps instance-level alignments, we
analyze the correct localization (CorLoc) performance on
target-domain training data. As summarized in Table B.4,
image-level recognition path significantly improves CorLoc
scores, indicating the selected regions usually have high
overlaps with ground-truths.

Moreover, we visualize some heatmap examples of
target-domain training data in Figure B.2. These heatmaps
are calculated via accumulating the predicted scores (i.e.,
objectness scores from RPN, classification scores from the
detection head, and the aggregated scores in Figure 4) of
each proposal and the corresponding proposal coordinates.

The class-agnostic objectness score maps (Figure B.2b)
roughly highlight the foreground regions, while the classifi-
cation score maps (Figure B.2c) coarsely locate some object
regions in a class-aware manner. As shown in Figure B.2d,
the highlighted regions in aggregated score maps are usually
with less background noise and highly overlapped with cor-
responding foreground objects. Note that our image-level
recognition path is not designed to mine all instances for a
specific class from an input image. Instead, it considers rep-
resenting the whole image with a few informative instances,
as introduced in §3.3.

C. Additional Discussions
Relationship between the image-level recognition path
and WSDDN [2]. There exists both resemblance and dif-
ferences. The resemblance is that both approaches utilize
image-level supervision for detection. Meanwhile, their
differences are significant. Concretely, WSDDN [2] trans-
forms the detection head to receive weak supervision and
is not applicable to RPN+detection head. In contrast, our
method re-uses the entire RPN+detection head to make
image-level prediction. It allows simultaneous alignments



(a) Input images (b) Objectness score maps (c) Classification score maps (d) Aggregated score maps
Figure B.2. Heatmap visualizations of the accumulated objectness scores, classification scores and aggregated scores for all proposals.



on RPN and detection head, which are critical to our method
(see Table B.1).

The intuition of the softmax operations in Figure 4 and
Eqn. (2). We use the two softmax operation for aggregat-
ing instance-level predictions into image-level predictions.
Similar to the classifier in the detection head of Faster R-
CNN [10], we first utilize a softmax along classes (i.e., soft-
max along row in Figure 4, and σrow(·) in Eqn. (2)) to ex-
tract the proposals’ probabilities of belonging to each object
class. Note that the background class is excluded during
performing the softmax, as it does not explicitly exist in the
image-level supervision.

Then, for each individual class, we use weighted sum to
collect multiple proposal-level probability scores (i.e., all
the proposals’ probabilities of belonging to this class) into a
single image-level probability. To this end, we introduce a
softmax across the proposals (i.e., softmax along column in
Figure 4, and σcol(·) in Eqn. (2)) to generate the weight for
each proposal. For the purpose of assigning weights, intro-
ducing a softmax is a common good choice, which provides
normalization effect and naturally highlights the most rep-
resentative proposals. In our preliminary experiments, re-
moving the softmax makes the training fail to converge. The
input of the softmax σcol(·) (i.e., the class-wise objectness
ō) is derived from the objectness o (i.e., the output logits of
the RPN). We empirically use 0 to initialize ō, as it shows
better results than using a large negative number (e.g., -10).

Higher-than-oracle results on several classes. We find
that our method as well as some state-of-the-art methods
achieve higher performance on several classes compared the
oracle models. We conjecture it is due to the class imbal-
ance problem on the target-domain datasets.

These tail classes have much fewer training instances
(e.g., 13 bus vs. 619 person instances on Cliparttest) and
are easily wrongly recognized by the oracle. In contrast, our
method partly alleviates this imbalance because the image-
level annotations are less imbalanced (e.g., 12 bus vs. 266
person images on Cliparttest), therefore improving the
accuracy on tail classes.

Moreover, we also notice that on these tail classes,
the performance gap looks large because the testing
datasets contain very few samples e.g., 8 bus instances on
Cliparttest), as well. Successfully detecting 1 more in-
stance could bring non-trivial improvement.

D. Additional Visualizations
Distribution visualization. We extract the features of
ground-truth bounding boxes and visualize the within-class
distributions of different domains on Watercolor dataset.
Figure D.3a shows source- and target-domain distributions
of source-only baseline, in which the distributions of all
classes are separated.

Figures D.3b-D.3e visualizes the distributions of four
different feature alignments. When utilizing them sepa-
rately, the distributions of two domains get closer, except
for instance-level class-wise alignment. This indicates the
importance of hierarchical feature alignment, i.e., only per-
form fine-grained alignment at top could be unstable.

When all feature alignments are imposed, cross-domain
features are aligned in a holistic and hierarchical manner.
Consequently, H2FA R-CNN achieves better aligning effect
(see Figure D.3f). We also find that perfectly aligning cross-
domain features remains difficult for some classes (e.g.,
cat), even though the instance-level annotations of both do-
mains are available (i.e., the oracle model).

Detection examples. In Figures D.4-D.7, we visualize
some detection results of our proposed H2FA R-CNN on
four benchmarks. Detections with confidence scores higher
than 0.5 are visualized. H2FA R-CNN is able to detect
different instances in complicated scenes. H2FA R-CNN
can correctly localize more foreground regions, while other
methods sometimes are confused due to severe domain
shifts (see the third line in Figure D.6). Moreover, H2FA
R-CNN also has strong ability for distinguishing different
different categories (see the third line in Figure D.7).

Figure D.8 shows several typical failure cases of H2FA
R-CNN. Without instance-level supervision guidance of tar-
get domain, it is difficult to reduce some false positive de-
tections. For instance, H2FA R-CNN sometimes gives some
redundant predictions which cover small object parts or
cover multiple objects. Small objects and crowded scenes
remain challenging for H2FA R-CNN.
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(a) Source-only baseline.
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(b) Image-level class-agnostic alignment.
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(c) Image-level class-wise alignment.
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(d) Instance-level foreground alignment.
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(e) Instance-level class-wise alignment.
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(f) H2FA R-CNN.
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(g) Oracle model.

Figure D.3. Within-class distributions of all classes on Watercolor [9] dataset, where the X-axis of each figure indicates the Euclidean
distance to the center of source domain.
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(a) Source-only (b) DT+PL [9] (c) H2FA R-CNN (d) Ground-truth
Figure D.4. Detection examples on Clipartall.



(a) Source-only (b) DT+PL [9] (c) H2FA R-CNN (d) Ground-truth
Figure D.5. Detection examples on Cliparttest.



(a) Source-only (b) DT+PL [9] (c) H2FA R-CNN (d) Ground-truth
Figure D.6. Detection examples on Watercolor.



(a) Source-only (b) DT+PL [9] (c) H2FA R-CNN (d) Ground-truth
Figure D.7. Detection examples on Comic.



Figure D.8. Failure cases of H2FA R-CNN. The ground-truth bounding-boxes are shown on the right.
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