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A. Implementation details
A.1. Training and testing of MCTformer

To integrate the CAM module into the proposed MCT-
former, we used a convolutional layer with C kernels of
3 × 3, a stride of 1, and a padding of 1, where C is the
number of classes. We used the AdamW optimizer to train
MCTformer with a batch size of 64 and an initial learn-
ing rate of 5 × 10−4. The number of training epochs was
set to 60. At test time, we generated transformer atten-
tion maps by fusing attentions from multiple layers. More
specifically, to generate the class-specific object localiza-
tion maps, we aggregated the class-to-patch transformer at-
tention maps from the last three layers, as detailed in Figure
6 in Section 4.3. To generate the patch-level pairwise affin-
ity, we aggregated the patch-to-patch transformer attention
maps from all the twelve transformer layers, as the pairwise
affinity is class-agnostic and different transformer blocks
can learn different-level similarities between tokens. By ag-
gregating all patch-to-patch attentions, it can thus produce a
more informative affinity map. For the aggregation method,
we followed [4] to first average attention maps from all the
heads in each transformer layer, and then added up the av-
eraged attention maps from all the selected layers, and fi-
nally performed a normalization to output a target attention
map. For the evaluation of the generated class-specific ob-
ject localization maps, we followed [6,10] to report optimal
results obtained when applying a range of thresholds to de-
termine background pixels.

A.2. Training and testing for semantic segmentation

Following prior works [1, 10, 12, 13], we used ResNet38
based DeepLab-V1 as the segmentation model. For data
augmentation, we used random scaling with a factor of
±0.3, random horizontal flipping, random cropping to size
321 × 321. The polynomial learning rate decay was cho-
sen with an initial learning rate of 7 × 10−4 and a power
of 0.9. We used the stochastic gradient descent (SGD) opti-
mizer to train the segmentation network for 30 epochs with
a batch size of 4. At test time, we used multi-scale test-
ing, i.e., using inputs of multiple scales (0.5, 0.75, 1.0, 1.25,
1.5), and max-pooling for aggregating outputs, and the CRF
with the default hyper-parameters suggested in [3] for post-
processing.

B. Additional quantitative results
We reported the per-class IoU results on both the val and

test sets of PASCAL VOC, and the val set of MS COCO

in Table 1 and Table 2, respectively. These results show that
the proposed MCTformer outperforms other state-of-the-art
methods on most object categories, which demonstrates the
superior performance of the proposed method.

C. Additional qualitative results

More qualitative segmentation results on the PASCAL
VOC and MS COCO val sets are presented in Figure 1
and Figure 2. We can observe that the segmentation model
trained with the pseudo labels generated by the proposed
method produces satisfactory segmentation results. The
model can segment large-scale objects with clear bound-
aries, and segment small-scale objects with fine-grained de-
tails in various indoor and outdoor scenes.

Figure 3 shows examples of the learned affinity maps
of selected points (marked by the green crosses) in the in-
put images, the generated transformer attention maps and
their refined results by using the learned patch-to-patch
transformer attention of the proposed MCTformer-V1. The
learned affinity map (see Figure 3b) represents the similar-
ity of the selected patch to all patches in the image. The
cold (blue) to warm (red) colors denote low to high at-
tention scores. As shown in the first row of Figure 3b,
the affinity map highlights almost the entire object region
for the class “dog”. Although the object patch is not acti-
vated in the original transformer attention map (marked by
the red square in the first row of Figure 3c), the learned
affinity propagates the activations from similar regions to
this patch, thus increasing its activation scores (marked by
the red square in Figure 3d). More examples of the class-
specific transformer attention maps and corresponding re-
fined results by using the affinity maps from the proposed
MCTformer-V1 are presented in Figure 4. These results
show that the proposed MCTformer-V1 can effectively gen-
erate class-specific object localization maps from the trans-
former attentions. In addition, the patch-to-patch trans-
former attention of MCTformer-V1 is used as affinity maps,
which can not only activate non-discriminative regions, but
also refine object localization maps with noise filtering to
produce more accurate object maps and boundaries.

More examples of the generated class-specific object lo-
calization maps from MCTformer-V2 on PASCAL VOC
and MS COCO are presented in Figure 5 and Figure 6, re-
spectively. Figure 5b shows the PatchCAM maps that are
extracted from the transformed patch tokens. The global re-
ceptive field of the transformer is beneficial for CAM to lo-
calize a full context of large-scale objects (e.g., the “plane”
and the “train” in the third and fourth rows), while it leads to



over-activated localization maps for small-scale or irregular
objects, such as the “bird” and the “plant” in the first and the
last rows of Figure 5. In contrast, as shown in Figure 5c, the
transformer attention usually allocates small values evenly
to large-scale objects, due to the self-attention mechanism
that all attention values of a class token are summed up to
one. For small-scale or slim objects such as the “bird” in
the first row of Figure 5, the proposed transformer atten-
tion can generate object localization maps with clear bound-
aries. The fusion of these two complementary maps, i.e., the
PatchCAM maps and the class-specific transformer atten-
tion maps, leads to significantly improved class-specific ob-
ject localization maps with highly activated object regions
and largely suppressed noise (Figure 5d and Figure 6d). Ap-
plying the patch-level pairwise affinity on the fused maps
from these two can generate further refined object localiza-
tion maps (Figure 5e and Figure 6e).



Table 1. Per-class performance comparison with the state-of-the-art WSSS methods in terms of IoUs (%) on PASCAL VOC. ∗ denotes
without post-processing.

bkg plane bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIoU

Results on the val set:
SEAM (CVPR20) [10] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5
BEC (ECCV20) [2] 88.9 74.1 29.8 81.3 53.3 69.9 89.4 79.8 84.2 27.9 76.9 46.6 78.8 75.9 72.2 70.4 50.8 79.4 39.9 65.3 44.8 65.7
AdvCAM (CVPR21) [6] 90.0 79.8 34.1 82.6 63.3 70.5 89.4 76.0 87.3 31.4 81.3 33.1 82.5 80.8 74.0 72.9 50.3 82.3 42.2 74.1 52.9 68.1
ECS-Net (ICCV21) [9] 89.8 68.4 33.4 85.6 48.6 72.2 87.4 78.1 86.8 33.0 77.5 41.6 81.7 76.9 75.4 75.6 46.2 80.7 43.9 59.8 56.3 66.6
CDA (ICCV21) [8] 89.1 69.7 34.5 86.4 41.3 69.2 81.3 79.5 82.1 31.1 78.3 50.8 80.6 76.1 72.2 77.6 48.8 81.2 42.5 60.6 54.3 66.1
Zhang et al. (ICCV21) [13] 89.9 75.1 32.9 87.8 60.9 69.5 87.7 79.5 89.0 28.0 80.9 34.8 83.4 79.7 74.7 66.9 56.5 82.7 44.9 73.1 45.7 67.8
Kweon et al. (ICCV21) [5] 90.2 82.9 35.1 86.8 59.4 70.6 82.5 78.1 87.4 30.1 79.4 45.9 83.1 83.4 75.7 73.4 48.1 89.3 42.7 60.4 52.3 68.4
MCTformer∗ (Ours) 90.6 71.8 37.5 85.1 52.9 68.8 78.8 78.7 87.1 28.4 78.9 53.0 83.9 78.2 76.8 76.4 54.1 80.1 46.0 71.6 54.3 68.2
MCTformer (Ours) 91.9 78.3 39.5 89.9 55.9 76.7 81.8 79.0 90.7 32.6 87.1 57.2 87.0 84.6 77.4 79.2 55.1 89.2 47.2 70.4 58.8 71.9

Results on the test set:
AdvCAM (CVPR21) [6] 90.1 81.2 33.6 80.4 52.4 66.6 87.1 80.5 87.2 28.9 80.1 38.5 84.0 83.0 79.5 71.9 47.5 80.8 59.1 65.4 49.7 68.0
Zhang et al. (ICCV21) [13] 90.4 79.8 32.9 85.8 52.9 66.4 87.2 81.4 87.6 28.2 79.7 50.2 82.9 80.4 78.9 70.6 51.2 83.4 55.4 68.5 44.6 68.5
MCTformer∗ (Ours) 90.9 76.0 37.2 79.1 54.1 69.0 78.1 78.0 86.1 30.3 79.5 58.3 81.7 81.1 77.0 76.4 49.2 80.0 55.1 65.4 54.5 68.4
MCTformer (Ours) 92.3 84.4 37.2 82.8 60.0 72.8 78.0 79.0 89.4 31.7 84.5 59.1 85.3 83.8 79.2 81.0 53.9 85.3 60.5 65.7 57.7 71.6

Table 2. Per-class performance comparison with the state-of-the-art WSSS methods in terms of IoU(%) on the MS COCO val set.

Class Luo et al. AuxSegNet MCTformer Class Luo et al. AuxSegNet MCTformer
(AAAI20) [7] (ICCV21) [11] (Ours) (AAAI20) [7] (ICCV21) [11] (Ours)

background 73.9 82.0 82.4 wine class 27.2 32.1 27.0
person 48.7 65.4 62.6 cup 21.7 29.3 29.0
bicycle 45.0 43.0 47.4 fork 0.0 5.4 13.9
car 31.5 34.5 47.2 knife 0.9 1.4 12.0
motorcycle 59.1 66.2 63.7 spoon 0.0 1.4 6.6
airplane 26.9 60.3 64.7 bowl 7.6 19.5 22.4
bus 52.4 63.1 64.5 banana 52.0 46.9 63.2
train 42.4 57.3 64.5 apple 28.8 40.4 44.4
truck 36.9 38.9 44.8 sandwich 37.4 39.4 39.7
boat 23.5 30.1 42.3 orange 52.0 52.9 63.0
traffic light 13.3 40.4 49.9 broccoli 33.7 36.0 51.2
fire hydrant 45.1 72.7 73.2 carrot 29.0 13.9 40.0
stop sign 43.4 40.3 76.6 hot dog 38.8 46.1 53.0
parking meter 33.5 59.8 64.4 pizza 69.8 62.0 62.2
bench 26.3 16.0 32.8 donut 50.8 43.9 55.7
bird 29.9 61.0 62.6 cake 37.3 30.6 47.9
cat 62.1 68.6 78.2 chair 10.7 11.4 22.8
dog 57.5 66.9 68.2 couch 9.4 14.5 35.0
horse 40.7 55.6 65.8 potted plant 21.8 2.1 13.5
sheep 54.0 61.4 70.1 bed 34.6 20.5 48.6
cow 47.2 60.7 68.3 dining table 1.1 9.5 12.9
elephant 64.3 76.1 81.6 toilet 43.8 57.8 63.1
bear 58.9 73.0 80.1 tv 11.5 36.0 47.9
zebra 60.7 80.8 83.0 laptop 37.0 35.2 49.5
giraffe 45.1 71.6 76.9 mouse 0.0 13.4 13.4
backpack 0.0 11.3 14.6 remote 37.2 23.6 41.9
umbrella 46.1 35.0 61.7 keyboard 19.0 17.9 49.8
handbag 0.0 2.2 4.5 cellphone 38.1 49.9 54.1
tie 15.5 14.7 25.2 microwave 43.4 28.7 38.0
suitcase 43.6 31.7 46.8 oven 29.2 13.3 29.9
frisbee 23.2 1.0 43.8 toaster 0.0 0.0 0.0
skis 6.5 8.1 12.8 sink 28.5 21.0 28.0
snowboard 10.9 7.6 31.4 refrigerator 23.8 16.6 40.1
sports ball 0.6 28.8 9.2 book 26.3 8.7 32.2
kite 14.0 27.3 26.3 clock 13.4 34.4 43.2
baseball bat 0.0 2.2 0.9 vase 27.1 25.9 22.6
baseball globe 0.0 1.3 0.7 scissors 37.0 16.6 32.9
skateboard 7.6 15.2 7.8 teddy bear 58.9 47.3 61.9
surfboard 17.6 17.8 46.5 hair drier 0.0 0.0 0.0
tennis racket 38.1 47.1 1.4 toothbrush 11.1 1.4 12.2
bottle 28.4 33.2 31.1 mIoU 29.9 33.9 42.0
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Figure 1. Qualitative segmentation results on the PASCAL VOC val set.
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Figure 2. Qualitative segmentation results on the MS COCO val set.
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(a) (e)(d)(c)(b)
Figure 3. Visualization of the generated patch-level pairwise affinity from the proposed MCTformer-V1 on the PASCAL VOC train set.
(a) Input; (b) Affinity map (the generated affinity maps for the points marked by the green crosses); (c) V1-attn (the generated transformer
attention maps from MCTformer-V1, where the red squares denote the original attention scores for the corresponding points in (b)); (d)
V1-attn-refined (the refined class-specific transformer attention maps, where the red squares denote the refined attention scores using the
corresponding affinity maps of (b)); (e) Ground-truth.



InpXW V1-aWWn V1-aWWn-UeÀned GUoXnd-WUXWh InpXW V1-aWWn V1-aWWn-UeÀned GUoXnd-WUXWh

(a) (b) (c) (d) (a) (b) (c) (d)

Figure 4. Visualization of the generated class-specific transformer attention maps and their refined results using the patch-level pairwise
affinity from the proposed MCTformer-V1 on the PASCAL VOC train set. (a) Input; (b) V1-attn (the generated class-specific transformer
attention maps from the proposed MCTformer-V1); (c) V1-attn-refined (the refined class-specific transformer attention maps using the
patch-level pairwise affinity from the proposed MCTformer-V1); (d) Ground-truth.
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Figure 5. Visualization of the generated class-specific object localization maps from MCTformer-V2 on the PASCAL VOC train set. (a)
Input; (b) V2-PatchCAM (the generated PatchCAM maps from MCTformer-V2); (c) V2-attn (the generated class-specific transformer
attention maps from MCTformer-V2); (d) the fusion maps of (b) and (c); (e) the refined fusion maps by the patch-level pairwise affinity
from MCTformer-V2; (f) Ground-truth.
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Figure 6. Visualization of the generated class-specific object localization maps from MCTformer-V2 on the MSCOCO train set. (a) Input;
(b) V2-PatchCAM (the generated PatchCAM maps from MCTformer-V2); (c) V2-attn (the generated class-specific transformer attention
maps from MCTformer-V2); (d) the fusion maps of (b) and (c); (e) the refined fusion maps by the patch-level pairwise affinity from
MCTformer-V2; (f) Ground-truth.
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