Appendix — Point-NeRF: Point-based Neural Radiance Fields
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A. Ablation Studies on Point Features
Initialization

Extractogr,  Randsor | Extractagor Randsgow
PSNRT| 30.71 25.44 33.77 32.01
SSIM? 0.967 0.932 0.973 0.972

Table 1. Comparisons between using the extracted image
features to initialize the point features (our full model) or
using the random initialized features.

We conduct experiments to demonstrate the im-
portance of our feature initialization. We compare
our full model and our model initialized without us-
ing the extracted image features on the NeRF Syn-
thetic dataset [10]. Without using the features from
images, we randomly initialize the point features
by using the popular Kaiming Initialization [4]. As
shown in Table 1, the neural points with image
features not only achieve better performance after
convergence at 200K iterations but also converge
much faster in the beginning. The randomly ini-
tialized neural points even cannot perform as well
as our full model, still outperforms state-of-the-art
methods such as NeRF and NSVF [7].

B. Per-scene Breakdown Results of the
DTU Dataset

We show the per scene detailed quantitative re-
sults of the comparisons on the DTU [5] dataset
in Table 2 and additional qualitative comparisons
in our video. Since our method also faithfully
reconstructs the scene geometry, our method has
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Scan | #1  #8  #21 #103 #114
SSIMt
Ours1x 0.935 0.906 0.913 0.944 0.948
Ours1ox 0.962 0.949 0.954 0.961 0.960
MVSNeRF1ox [2]/0.934 0.900 0.922 0.964 0.945
IBRNET 0k [14] |0.955 0.945 0.947 0.968 0.964
NeRFapox [10]  |0.902 0.876 0.874 0.944 0.913
LPIPSy g, |
Ours k 0.151 0.207 0.201 0.208 0.148
Oursiox 0.095 0.130 0.134 0.145 0.096
MVSNeRFiox  [0.171 0.261 0.142 0.170 0.153
IBRNET: ok 0.129 0.170 0.104 0.156 0.099
NeRFz00x 0.265 0.321 0.246 0.256 0.225
PSNR{
Ours: x 2879 28.39 24.78 30.36 29.82
Oursiox 30.85 30.72 26.22 32.08 30.75
MVSNeRFjox  |28.05 28.88 24.87 32.23 28.47
IBRNET 10 31.00 32.46 27.88 34.40 31.00
NeRF200x 26.62 28.33 23.24 3040 26.47

Table 2. Quantity comparison on five sample scenes in
the DTU testing set with the view synthesis setting in-
troduced in [2]. The subscripts indicate the number of
iterations during optimization.

the best SSIM scores in most of the cases. Our
model also has the best LPIPS for most of the
scenes and therefore, is more visually authentic,
as shown in the Figure 6 of the main paper and
the video. IBRNet combines the colors from the
source views to compute the radiance colors dur-
ing shading. This image-based approach results in
better PSNR. However, as shown in our video, our
method is more temporal consistent because the lo-



cal radiance and geometries are consistently stored
at each neural point location.

C. Per-scene Breakdown Results of the
NeRF Synthetic Dataset

We show the per scene detailed quantitative re-
sults of the comparisons on the NeRF Synthetic
[10] dataset in Table 3 and additional qualitative
comparisons in our video. Point-NeRF achieves
the best PSNRs, SSIMs and LPIPSs on most of
the scenes and outperforms state-of-the-art meth-
ods [1,7, 10, 14] with a big margin. On the other
hand, our method initiated with COLMAP points is
on par with NeRF. Even starting from the unideal
initial points, we still manage to improve the ge-
ometry reconstruction and generate a high-quality
radiance field with point pruning and growing. The
fact that our model at 20K iterations matches the
results of NeRF at 500K iterations clearly demon-
strates our ability of fast convergence.

D. Evaluation on Large-scale 3D Scenes
(ScanNet).

While our model is purely trained on a dataset
of objects (the DTU dataset), our network general-
izes well to large-scale 3D scene datasets. Follow-
ing [7], we use two 3D scenes, scene 0101_04 and
scene 0241_01, from ScanNet [3]. We extract both
RGB and depth images from the original videos
and from which we sample one out of five frames
as training set and use the rest for testing. The RGB
images are scaled to 640 x 480. We finetune each
scene for 300K steps with point pruning and grow-
ing.

We compare with 3 other state-of-the-art meth-
ods with quantitative results in Tab. ??. In particu-
lar, we compare with a scene representation model
(SRN) [13], NeRF [10] and a sparse voxel-based
neural radiance field, NSVF [7]. The qualitative
comparison is shown in Tab. 4 and visual results
are shown in Figure 1. Our Point-NeRF outper-
forms all these previous studies in all metrics by
substantial margins. Please find more visual results
in our video.

E. The Tanks and Temple Dataset

We also experiment Point-NeRF on the Tanks
and Temples dataset [6]. we reconstruct the ra-
diance field of five scenes selected in NSVF [7]
and compare our model with three models NV [&],
NeRF [10] and NSVF [7]. We show the quantita-
tive comparison in Tab. 5 and visualize quality re-
sults in Figure 2. Please find more visual results in
our video.

F. [Initializing Neural Points from
COLMAP Points

Point-NeRF can use the points of any external
reconstruction method. For instance, the output of
COLMAP [12]is apointcloud {(p;)|i = 1,..., N}.
We set y; as 0.3 in the beginning. The confidence
score of valid points will be pushed to 1 during the
optimization process. To acquire point features f;
for a point, We first rule out all the views where the
point is occluded by other points, then we find the
view of which the camera is the closest to the point.
Then from that view, we can unproject the point
onto the feature maps extracted by G'; (see Figure
2(a) in the main paper) from the selected view and
obtain the f;.

G. Networks Architectures

Cost volume-based CNN G, .,. Our cost volume-
based CNN adopts the popular architecture of [17],
which is simple and efficient. It includes three lay-
ers of depth features extraction CNN, while the lat-
ter two layers down-samples the spatial dimension
by 4 and output a feature map with 32 channels.
Then, these features from each view will be warped
according to camera pose and the variance will be
computed. The variance features will go through a
narrow U-Net [15] and output a 1-channel feature
to calculate the depth probability.

Image Feature Extraction 2D CNN G . The im-
age feature extraction network takes inputs of RGB
image and has three down-sampling layers, each
output feature with channels of 8,16,32. We ex-
tract the point features by unprojecting a 3D point
to each layer and taking the multi-scale features.



NeRF Synthetic

Chair Drums Lego Mic Materials Ship Hotdog Ficus
PSNR?
NPBG [1] 26.47 21.53 24.84 26.62 21.58 21.83 29.01 24.60
NeRF [10] 33.00 25.01 3254 3291 29.62 28.65 36.18 30.13
NSVF [7] 33.19 25.18 32.54 3427 32.68 2793 37.14 31.23
Point-NeRF59L - 35.09 25.01 32.65 3554 2697 30.18 3549 33.24
Point-NeRFoor  32.50 25.03 3240 3231 28.11 28.13 34.53 32.67
Point-NeRFogox 3540 26.06 35.04 3595 29.61 3097 37.30 36.13
SSIM?T
NPBG 0.939 0904 0.923 0959 0.887 0.866 0.964 0.940
NeRF 0.967 0925 0.961 0980 0949 0.856 0974 0.964
NSVF 0.968 0.931 0.960 0.987 0973 0.854 0.980 0.973
Point-NeRFgglOK 0.990 0944 0.983 0.993 0955 0941 0.986 0.989
Point-NeRFoo 0981 0944 0.980 0986 0.959 0916 0.983 0.986
Point-NeRFoqorx 0.991 0.954 0.988 0.994 0971 0942 0.991 0.993
LPIPSy 44 |
NPBG 0.085 0.112 0.119 0.060 0.134 0.210 0.075 0.078
NeRF 0.046 0.091 0.050 0.028 0.063 0.206 0.121 0.044
Point-NeRF5L - 0.026  0.099 0.031 0.019 0.100 0.134 0.061 0.028
Point-NeRFoox  0.051 0.103 0.054 0.039 0.102 0.181 0.074 0.043
Point-NeRFogox  0.023  0.078 0.024 0.014 0.072  0.124 0.037 0.022
LPIPSAlea:ir

NSVF 0.043 0.069 0.029 0.010 0.021 0.162 0.025 0.017
Point-NeRF5L - 0.013  0.073 0.016 0.011 0.076  0.087 0.032 0.012
Point-NeRFogx  0.027 0.057 0.022 0.024 0.076  0.127 0.044 0.022
Point-NeRFogox  0.010 0.055 0.011 0.007 0.041 0.070 0.016 0.009

Table 3. Detailed breakdown of quantitative metrics of individual scenes for the NeRF Synthetic [
and baselines. All scores are averaged over the testing images. The subscripts are the number of iterations of the models
and Point-NeRF595 ;. indicates our method initiates from COLMAP points and optimized for 200 thousand iterations.

] for our method

Average over two scenes Scene 101  Scene 241
SRN [13] NeRF[9] NSVF[7] Point-NeRF (Ours) Point-NeRF (Ours)
PSNR 1 18.25 22.99 25.48 30.32 30.13 30.51
SSIM t 0.592 0.620 0.688 0.909 0.912 0.906
RMSE | 14.764 0.681 0.079 0.031 0.032 0.030
LPIPS gjex 4 0.586 0.369 0.301 0.220 0.203 0.238
LPIPSy 44 | - - - 0.292 0.286 0.299

Table 4. Quantity comparison on two scenes in the ScanNet dataset [3] selected in NSVF [7]. RMSE is the Root Mean
Square Error. Our method Point-NeRF outperforms all state-of-the-art methods in all metrics by substantial margins.

Point-based Radiance Fields MLP. We visualize
the details of the point feature aggregation and ra-
diance computation in Figure 3. In all of our ex-

periments, we set ¢; = 56, ¢2 = 128. The MLPs
F, R, T have 2, 3, 2 layers, respectively. The inter-
mediate feature channels of I’ and 1" are 256, and



»

Figure 1. The qualitative results of our Point-NeRF on the ScanNet dataset [6]. The first row shows five generated test

frames of scene 101 and the second row shows five generated test frames of scene 241.

Tanks & Tamples

Ignatius  Truck Barn Caterpillar Family Mean
PSNR 1
NV [8] 26.54 2171 20.82 20.71 28.72  23.70
NeRF [10] 2543  25.36 24.05 23.75 30.29  25.78
NSVF [7] 2791 26.92 27.16 26.44 33.58 28.40
Point-NeRF (Ours) 2843  28.22 29.15 27.00 35.27  29.61
SSIM 1
NV [8] 0.992  0.793 0.721 0.819 0.916 0.848
NeRF [10] 0.920  0.860 0.750 0.860 0.932  0.864
NSVF [7] 0.930  0.895 0.823 0.900 0.954  0.900
Point-NeRF (Ours)  0.961  0.950 0.937 0.934 0.986 0.954
LPIPS 4jcs \L
NV [8] 0.117  0.312 0.479 0.280 0.111  0.260
NeRF [10] 0.111 0.192 0.395 0.196 0.098  0.198
NSVF [7] 0.106  0.148 0.307 0.141 0.063  0.153
Point-NeRF (Ours)  0.069  0.077 0.120 0.111 0.024  0.080
LPIPSy 4, |
Point-NeRF (Ours)  0.079  0.117 0.180 0.156 0.046 0.115

Table 5. Quantity comparison on five scenes in the Tanks and Temples dataset [0] selected in NSVF [7]. Our method
Point-NeRF outperforms all state-of-the-art models in all metrics by substantial margins.

128 channels for R.

H. Neural Point Querying

To efficiently query neural point neighbors for
ray marching, inspired by the CAGQ point query
introduced in [16], we implement a grid query
method. Then we build grid-point indices which
register each neural point to evenly spaced 3D
grids. Since these grids in the perspective coordi-

nate are cubic, in the world coordinate, they have
shapes of spherical voxels.

With the grid-point indices, we can discover
grids that have neural points and also their grid
neighbors. These grid neighbors are the regions of
interest since there should exist neural points within
the query radius. If a ray crosses these regions, we
can place shading points inside. Finally, we query
neural points by directly retrieving the stored neu-



Figure 2. The qualitative results of our Point-NeRF on the Tanks and Temples dataset.
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Figure 3. The network pipeline of radiance fields computation at a shading location « from K neural points neighbors.

“PosEN” indicates positional encoding [10].

“d3” indicates the 3 channels vector of view directions at x. The final

outputs are the radiance color r and density o. Please also refer to the equations (3-7) in the main paper.

ral points according to the grid-point indices.

In all of our experiments, we query 8 nearest
neural point neighbors for each shading location.
Along each ray, we only search for neural point
neighbors and compute radiance for shading lo-
cations in a grid that is occupied itself or nearby
occupied grids. Therefore, our shading is much
more efficient by skipping the empty space, un-
like other radiance fields representations. This is
one key advantage that enables fast convergence.
Even NSVF [7], high-performance local radiance
representation, has to probe the empty space in the
beginning and gradually prune the voxels along its

training process.

The benefit of this strategy is two-fold: First, we
only place shading points in the area that exists neu-
ral points, so that we avoid radiance computation in
the empty space. Second, the nearby points can be
efficiently retrieved according to the indices, which
substantially accelerate the point query speed.

I. Limitations

Because we do not focus on the rendering speed
and we have not optimized our implementation
(point querying and point feature aggregation) for
fast rendering. Although, our model is naturally



faster than NeRF (3X) due to that we skip the shad-
ing in empty space. We believe future works on
combining mechanisms introduced in current pa-

pers such as [11,

] with our point-based radiance

representation would further benefit the neural ren-
dering technology.
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