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Figure S-1. Demonstration of the feature interpolation during 3D
feature rendering.

1. Implementation Details

1.1. 3D Feature Rendering

To better encode the geometric information and improve
the efficiency, we applied 3D networks in the 3D con-
text feature encoder as well as in the 3D-2D hybrid net-
work (for 3D descriptor learning). To adapt to the 2D fea-
tures from image modality, we adopt a differentiable ren-
dering technique to render these learned high-dimensional
features/descriptors to 2D maps. Fig. S-1 demonstrates
the feature rasterization procedure. We first find the tri-
angle vertex indices in the 3D mesh for each spatial loca-
tion of the 2D feature map using a modern rasterization
pipeline. Then, the feature vector f being rendered to a
2D location is interpolated from the encoded 3D features of
the indices found above based on the normalized weights
wi, wj , wk defined in the barycentric coordinate system,
i.e., f = wif i + wjf j + wkfk with wi + wj + wk = 1.

1.2. Details About the Mechanism of GRU

We concatenate the local correlation volume, the recti-
fied correspondence field and the previously encoded con-
text feature map Fctx as a data volume, denoted as xt, and
input it to a GRU for correspondence field estimation. We
adopt a GRU architecture same as [6], which controls the
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Figure S-2. Details about how to identify the correspondences in
the 3D model for an observed 2D image point xi for 3D-2D de-
scriptor learning. The identified correspondences are used in the
descriptor loss Ld to construct the positive set { }+ for contrastive
leaning. Note that, the ground-truth depth map is rendered ac-
cording to the ground-truth object pose, and this correspondence
identification process is conducted only during training.

hidden state update in the following manner:

zt = sigmoid(K3×3([ht−1, xt];Wz))

rt = sigmoid(K3×3([ht−1, xt];Wr))

h̄t = tanh(K3×3([rt � ht−1, xt];Wh))

ht = (1− zt)� ht−1 + zt � h̄t

(1)

where zt is the update gate vector, rt is the reset gate vec-
tor and ht is the updated hidden state. Here, K3×3(·;W )
denotes a 3 × 3 convolution kernel and � denotes the
Hadamard product. The correspondence field Ĉt is then es-
timated from the hidden state ht with two convolution lay-
ers.

1.3. Construction of the Positive Set and Negative
Set for Descriptor Loss

To learn distinctive 3D and 2D descriptors for the sim-
ilarity score modeling of Eq. (3) , we have proposed a de-
scriptor loss denoted as Ld (Eq. (8)). To measure the first
loss term Lcir(diI , {d

j
M}+, {dkM}−) in Ld, for each fore-

ground point xi (with descriptor diI) in the target image,
we need to find a set of its correspondences {xjM} (with
associated descriptors {djM}+) in the model.
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As illustrated in Fig. S-2, to this end, we first lift the
2D image point xi to the 3D camera frame according to its
associated depth value and the camera intrinsics, and then
the lifted points are transformed to the same frame of the
object model for KNN searching. The KNN searching is
based on a KD-tree for efficient training, and the K corre-
sponding model descriptors {djM}+ are obtained according
to the KNN searching result. The descriptors of the remain-
ing non-corresponding model points constitute the negative
set {dkM}− in the contrastive loss.

1.4. Derivation of Jacobians in LM

The objective function of the pose optimization is
E(ξ) =

∑M
i=1(Ĉt(x

i)−C(xi; ξ))Twi(Ĉt(x
i)−C(xi; ξ))

(Eq. (4)), where wi =
(
wi 0
0 wi

)
. Here, the correspon-

dence derived with residual pose parameter argument ξ is
expressed as

C(xi; ξ) = π(exp(ξ)π−1(xi, zi)), (2)

where

π([X,Y, Z,W ]T ) =

(
fx ·X/Z + cy
fy · Y/Z + cy

)
,

π−1([x, y]T , z) =


(x− cx)/fx
(y − cy)/fy

z
1


(3)

We denote each residual term in the summation (Eq. (5)) as
ri = [rix, r

i
y]T = Ĉt(x

i)−C(xi; ξ) and its derivative w.r.t.
pose argument ξ is derived as

∂ri

∂ξi
= −∂C(xi; ξ)

∂ξ

= −∂π(X)

∂X

∂X

∂ξ
(letting X = π(exp(ξ)π−1(xi, zi))),

(4)
where

∂π(X)

∂X
=

(
fx/Z 0 −fx ·X/Z2 0

0 fy/Z −fy · Y/Z2 0

)
, (5)

and

∂X

∂ξ
=

1 0 0 0 Z ′ −Y ′
0 1 0 −Z ′ 0 X ′

0 0 1 Y ′ −X ′ 0

 . (6)

Here, X , Y , Z are the components of X, i.e., X =
[X,Y, Z]T , and X ′, Y ′, Z ′ denote the components of
π−1(xi, zi). For the back propagation, we follow [7] for
numeric stability.

1.5. Network Architecture

The specific network architectures is provided in Fig. S-
3. Note that, for the 3D descriptor net and the 3D con-
text encoder, we adopt the layers and operations from KP-
Conv [8].

2. Experimental Details

We train all of our networks end-to-end on a Tesla V100
GPU with a batch size of 1 for 150k iterations, using the
Adam [3] optimizer with an initial learning rate of 10−4

and gradually decrease it with a cosine annealing strategy
(of a half cosine cycle). The weights of the correspondence
loss, the model alignment loss Lma, and the descriptor loss
Ld are set to 0.5, 1 and 1 respectively. All our models are
trained agnostic to the initial pose sources where disturbed
ground-truth poses with Gaussian noise are taken as ini-
tial poses for training following [4]. The trained model is
directly tested with initial poses provided by different ob-
ject pose estimation methods without further fine-tuning.
Specifically, the translational variance and rotational vari-
ance of the Gaussian noise are consistently set to σt = 0.05
cm and σr = 15◦ respectively following [4] for all the ex-
periments for fair comparison. Note that σt = 0.05 denotes
the variance along the z direction, while for the x and y di-
rections, we decrease the variances by 1

5×, considering the
conventional methods usually have larger variances in depth
estimation.

For the LINEMOE dataset, besides the real data, we add
more synthetic data for training with the same configura-
tions as in [4]. For the Occlusion LINEMOE, we further
create occlusions during training by cropping and pasting
the foreground patches randomly following [5]. For the
YCB-Video dataset, we use the provided data from the BOP
benchmark [1]. We also apply data augmentations including
random lighting and color jittering as in [4] during training.

For efficiency, we crop the input target image to size
320×320 with a cropping window centered at the projected
object center based on the initial pose. This cropped image
is sent to the 2D net of the 3D-2D hybrid network for 2D
descriptor learning. For the correspondence field estimation
and pose refinement, the input image is further zoomed in
and cropped to size 240×240 according to the rendered im-
age (according to the initial pose) for efficiency. The zoom-
in and cropping procedure are similar to [4] but they adopt
larger zoom-in size (i.e., 640× 480). Larger cropping win-
dow should produce more robust performance against large
initial pose errors, because if the initial pose estimation er-
ror is significant, the target could be outside of the cropping
window, whose pose by no means could be recovered.
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Figure S-3. Detailed architectures of the networks.

3. More Experimental Results
3.1. Learning Bandwidth Parameter σ of the Simi-

larity score.

Fig. S-6 plots the variations of learnable bandwidth pa-

rameter σ of the similarity score wi = exp

(
− |1−d

iT

Mdi
I |

σ

)
(Eq. (3)) during training. It can be found that learnable
parameter σ (initialized with 1) first decreases and stably
stays low for all the sequences. A smaller σ value produces
a similarity score function of a sharper shape. A sharper
(strict) similarity measurement downweights the unreliable
correspondences more effectively, because only the corre-
spondence pairs with very similar descriptors could be rec-
ognized as reliable during pose optimization. Note that,
we only supervise the final pose results estimated from
the weighted correspondences (weighted by the similarity
scores wi), and this parameter is adjustment by the network
automatically to pursue more reliable regions for more ac-
curate pose estimations during training.

3.2. Qualitative Analysis

Fig. S-4 exhibits the estimated correspondence fields
(before rectification), the estimated object poses, and the
rectified correspondence fields according to the estimated
poses, from different recurrent iterations of a single ren-
dering cycle. To give a better view on the correspondence
estimation quality, we also visualize the warped observed
images, i.e., obtained by warping the observed images to

the rendered frame based on the estimated correspondence
field. Generally, if the correspondence estimation is better,
the warped image is more vivid and more similar to the ren-
dered image in appearance. It can be found that the rectified
correspondence field (conforming to rigid-transformation
constraints) is less noisy and produces more vivid warped
image compared with the non-rectified counterpart. It can
also be found that the correspondence field estimations and
the object pose estimations (visualized as red boxes) are
gradually improved as the recurrent refinement going on.

Fig. S-5 includes more visualization results of the pose
estimation in severely occluded cases with erroneous pose
initializations. Our methods consistently exhibits strong ro-
bustness against these challenging cases.

3.3. Detailed Limitation Discussion

Although our method achieves robust performance
against erroneous pose initializations and occlusions, our
system is still limited to known objects with CAD mod-
els similar to many previous works [2, 4, 10]. We evalu-
ate our model trained on the YCB-Video dataset on another
dataset LINEMOD directly. The generalization ability of
our model is still found limited currently and the average
ADD-(S) score on LINEMOD is 71.49% as reported by the
2nd row of Table S-1. Though the accuracies are still im-
proved compared with the provided initial poses (accuracy
63.26%), the performance is inferior to that of the dedicated
model trained on LINEMOD (accuracy 97.37% reported in
Table 1a in our paper). But we find that finetuning the pose
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Figure S-4. Visualizations of the estimated correspondence fields (CFs), rectified CFs, warped observed image with the CFs and the pose
estimation of each recurrent iteration (iter1-iter4) in the first rendering cycle. For pose visualization, the white boxes represent the input
erroneous initial poses, the red boxes are estimated by our algorithm, while the ground-truth boxes are in blue.

Table S-1. Performance evaluation on unseen objects. ADD-(S) metric (%) is used for evaluation and the initial poses are provided by
PoseCNN [9]. The 2nd row lists the performances on LINEMOD dataset when directly evaluating a model trained on a totally different
dataset YCB-Video. The 3rd row shows the improved performances after only finetuning the pose refinement module.

ape benchvise camera can cat driller duck eggbox glue holepuncher iron lamp phone Avg.
Initial Pose 25.62 56.09 41.78 52.24 69.98 47.25 64.92 53.07 94.98 77.11 70.73 98.50 70.17 63.26

Before Pose Refinement Module Finetuning 33.24 70.90 80.59 87.40 68.96 84.34 45.92 94.74 86.68 24.93 96.83 83.69 71.20 71.49
After Pose Refinement Module Finetuning 80.38 99.90 99.02 99.21 97.80 99.90 88.08 99.91 99.61 98.00 99.90 99.90 99.06 96.98

refinement module, including the GRU and descriptor gen-
eration networks (with the image feature encoding and 3D

context feature encoding modules frozen), on these unseen
objects is able to improve the performance significantly. As
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Figure S-5. More Visualizations of estimated poses and similarity score maps on Occlusion LINEMOE dataset. For pose visualization,
the white boxes represent the erroneous initial poses, the red boxes are estimated by our algorithm and the ground-truth boxes are in blue.
Here, the initial poses for pose refinement are originally from PVNet [5] but added with significant disturbances for robustness testing (
adding Gaussian noise σt = 0.09 cm, σr = 10◦). For the similarity score map, brighter color represents a higher similarity.

Figure S-6. The learning process of the parameter σ in the simi-
larity score Eq. (3).

shown in Table S-1, the average accuracy improves from
71.49% to 96.97% which is comparable to training from
the scratch (97.37%)
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