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1. Network Architecture
In this section, we will show the detailed network ar-

chitectures in the prediction system including the social en-
coder Esocial(·), the decoder D(·) and the fulfillment decoder
Dfull(·). The fulfillment encoder Efull(·) has the same struc-
ture as the social encoder.

1.1. Social Encoder

The social encoder Esocial(·) consists of the individual
branch and the social branch; see Fig. 1. The individual
branch takes the agent’s past trajectory X as the input and
outputs the ego information embedding. The social branch
takes both the agent’s past trajectory X and its neighbouring
agents’ past trajectories XN as the input and uses the social
pooling module to fuse the social information. We adopt
the neural motion message passing (NMMP) in [7] as the
social pooling module. The output of the two branches is
then concatenated as the final output of the social encoder.

In our implementation, the input channel for Conv1d is
2 with the output channel equals 16. The input/output size
for GRU is 16/64. The weights for both Conv1d and GRU
are initialized with Kaiming norm [6] and the biases are
initialized to 0. For the social pooling module, we use 2
iterations of neural message passing in NMMP with the
bottleneck dimension equals to 64.

1.2. Decoder

The decoder D(·) aims to reconstruct past trajectory and
predict the future intention from input past-intention feature
[k;v]. The decoder has a residual structure which consists of
two residual blocks; see Fig. 2. Each residual block receives
the past trajectory X along with past-intention feature [k;v],
and produces a part of reconstructed past trajectory X̂1, X̂2

and predicted future intention ŷ
Tf

1 , ŷ
Tf

2 . We sum up the two
residual blocks’ outputs as the final output X̂ = X̂1 + X̂2

and ŷTf = ŷ
Tf

1 + ŷ
Tf

2 . In each residual block, we use a

*Equal contribution.
†Corresponding author.
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Figure 1. The structure of the social encoder Esocial(·).
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Figure 2. The residual structure of the decoder D(·).
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Figure 3. The residual structure of the fulfillment decoder Dfull(·).

Conv1d and a GRU to extract past trajectory’s feature and
two MLPs as output heads to produce reconstructed past
trajectory and predicted future intention.

In our implementation, MLPs in the decoder have the
hidden size of 64 × 3 → 1024 → 512 → 1024 . Conv1d
and GRU modules have the same implementation as in the
social encoder Esocial(·).
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1.3. Fulfillment Decoder

The fulfillment decoder Dfull(·) has the similar struc-
ture with the decoder D(·) except that the input hidden
representation now contains the intention information, i.e.,
h′
x = [hx;Fd(ŷ

Tf )]; see Fig. 3.
In our implementation, the intention encoding function

Fd is a MLP with the hidden size → 8 → 16 → 16.
The hidden size of MLPs in the fulfillment decoder is
64 × 3 + 16 → 1024 → 512 → 1024. Conv1d and GRU
modules have the same implementation as in the social en-
coder Esocial(·).

2. Experiment Details
2.1. Baselines

We compare our MemoNet against several state-of-the-art
prediction methods, which are now briefly described below:

- Social-LSTM [1]: It proposes a LSTM based model
which shares the social information between layers to predict
group behaviors.

- Social-GAN [5]: It adopts a GAN based model with a
pooling mechanism to learn social interactions. This paper
also uses a variety loss to encourage prediction diversity.

- STGAT [8]: It proposes a sequence-to-sequence model
using LSTM and graph attention network to better capture
the spatial-temporal interactions for pedestrians involved in
a scene.

- Social-STGCNN [12]: This paper models social interac-
tions as a graph and apply a kernel function in the weighted
adjacency matrix for data efficiency.

- Tranformer-TF [3]: It tries the use of a transformer net-
work for trajectory prediction. This paper only uses attention
based mechanisms to model social interactions and achieve
a better long-term prediction.

- STAR [15]: It proposes a transformer based graph con-
volution mechanism to model intra-graph social interaction
for predicting trajectories.

- Trajectron++ [14]: It incorporates the heterogeneous
data and produces future-conditional predictions that respect
dynamics constraints tightly integrated with downstream
robotic modules.

- SOPHIE [13]: It proposes an interpretable framework
based on GAN jointly modeling path history and scene con-
text information to provide plausible predictions.

- NRI [4]: It proposes dynamic neural relational inference
based on sequential latent variable models to model dynamic
entity relations for every time-step.

- NMMP [7]: It proposes a neural message passing mod-
ule to explicitly model the interactions between actors. This
work uses an individual branch for a single actor and an
interactive branch for interactions between actors.

- MANTRA [11]: This paper proposes the use of a mem-
ory module for trajectory prediction. A learnable controller

offset

Past Trajectory

Predicted Intention

Linear Interpolation

Fulfillment Trajectory

Figure 4. The fulfillment decoder predicts offsets based on the
linear interpolation.

is introduced to control the memory size which only takes
the prediction error as the input.

- EvolveGraph [9]: It proposes a generic forecasting
framework for a multi-agent interacting system. It uses
latent interaction graphs among multiple interactive agents
to recognize and predict explicit relational structure.

- CF-VAE [2]: It uses the conditional normalizing flow
based prior for better capture complex multi-modal condi-
tional distribution predicting trajectories.

- PECNet [10]: This work uses variational autoencoder
structure to infer the destination first. With the assistant of
distant trajectory endpoints, it then will interpolate trajecto-
ries.

- AgentFormer [16]: It proposes an agent-aware
transformer-based prediction structure, which simultane-
ously models the time and social dimensions.

2.2. Training Details

In paper submission, we show the overall training
pipeline. Here we will further demonstrate details in our
experiments including warming up the learnable addresser
and predicting offsets for the fulfillment decoder.

Warm up the learnable addresser. To search the ad-
dresses of similar past memory instances in the memory
bank for an input past trajectory feature, we propose a train-
able addresser with a novel similarity loss. However, we
find that it is hard to train this addresser from scratch due
to the coupling between Fq and Fk. Notice that if both
functions are identity functions, then the learnable addresser
will degenerate into a cosine similarity function. Inspired
by this, we first will warm up the addresser with the loss
function Lq = ||Fq(q) − q||2 and Lk = ||Fk(ki) − ki||2.
After warming up, we then will use the similarity loss to
finetune the learnable addresser.

Offsets prediction for the fulfillment decoder. To pre-
vent a sudden change between the intentions and fulfilled
trajectory, we first apply a linear interpolation between the
location on timestamp 0 and the intention then fulfill the
trajectory by predict the offset with the interpolated trajec-
tory. Fig. 4 gives an example. Let ŷTf

i be the position of
ith intention after clustering and x0 be the last observed
frame. Then the final predicted frame can be expressed as

ŷj
i =

j

Tf
(ŷ

Tf

i −x0)+x0+yj
i,full, where j = 1, 2, ..., Tf−1

and yj
i,full is the MLP’s output for the jth frame.



Table 1. Hyperparameters for different datasets.

Dataset Memory Size
Destination
Clustering

SDD 14653(81.5%) 120

ETH-
UCY

ETH 27506(90.8%) 250
Hotel 26489(89.3%) 260
Univ 8168(82.7%) 370
Zara1 24336(85.2%) 240
Zara2 23391(89.7%) 280

NBA 341K(95.5%) 120

Table 2. Influence of dT for training the learnable addresser on
SDD.

dT 20 80 140 200 500
minADE20 8.79 8.56 8.70 8.73 8.77
minFDE20 12.94 12.66 12.78 12.82 12.93

2.3. Hyperparameters for Different Datasets

Here we report the hyperparameters for different datasets
including memory size and destination clustering; see Ta-
ble 1. As verified in the ablation experiments, both mem-
ory size and destination clustering have significant influ-
ences on the model performance. Intuitively, it is hard
for the memory bank that only has seen walking (east
turning) cases to accurately predict running (west turn-
ing) cases. Therefore, we adopt data normalization for
some datasets. Here we mainly consider two types of
data normalization: rotation θ and scale s, both of which
only use the first and the last frames in the past trajec-

tory. Mathematically, θ = arctan[
(x−Tp+1 − x0)[1]

(x−Tp+1 − x0)[0]
] and

s = ||x−Tp+1 − x0||. We then construct a rotation matrix

with M(θ) =

[
cos θ sin θ
− sin θ cos θ

]
and normalize the past tra-

jectory X using Xnorm =
XM(θ)T

s
.We use the rotation

normalization for ETH, Hotel, and Univ subsets and the
scale normalization for all the ETH-UCY subsets.

3. Supplementary Experiments

3.1. Influence of dT

In our designed pseudo label for training the learnable
addresser: LAddr =

∑M
i=1(si − max(0, dT−di

dT
))2. There

exists a distance threshold hyperparameter whose influence
will be discussed here. Table 2 shows the results for different
dT . We see that i) the best performance is achieved when
dT = 80 on SDD; and ii) too large or too small threshold will
lead to the performance degradation because of the generated
unreasonable pseudo label.
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Figure 5. ADE/FDE as a function of the memory size M .

3.2. Influence of memory size

We report the relation between the memory size and the
performance in Table 5 in the paper. Here we also draw
curves on both SDD and ETH dataset to have a more clear
representation; see Figure 5. We see that i) when memory
size is too small, the memory bank preserves insufficient
information and is hard to provide relevant instances, de-
teriorating the performance. ii) when memory size is too
large, the memory bank preserves redundant information and
decreases intention diversity, affecting the performance.
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