
Supplementary Material:
Surface-Aligned Neural Radiance Fields for Controllable 3D Human Synthesis

A. Algorithms
We present the pseudocodes of our proposed dispersed

projection and vertex normal alignment in Algorithm 1 and
Algorithm 2, respectively.

Algorithm 1: Dispersed projection

Input: x ∈ R3, body meshM
Output: Projected surface point s
Initialize S := []
Find the nearest surface point s̃ to x.
Find all triangles containing s̃, denoted as T .
for T ∈ T do

vertex normal alignment for T .
if x inside the parallel triangle T ′ then

barycentric interpolated projection x→ sT .
S.append(sT )

end
end
return s := argmin

sT

‖sT − x‖, sT ∈ S

Algorithm 2: Vertex normal alignment
Input: Triangle T
for i ∈ {1, 2, 3} do

Compute two edge directions e1, e2 from vi.
Orthogonally project ni on plane T at pi.
Decomposite pi − vi = c1e1 + c2e2.
c̃1, c̃2 := max(0, c1),max(0, c2). // only

consider that pi falls within
the inward region.

ni := ni − c̃1e1 − c̃2e2. // alignment.
Normalize the length of ni to 1.

end

B. Implementation details
B.1. Network architecture

We present a NeRF network architecture in Fig. 1. We
use positional encoding [2] with the frequency L = 6

256

ResBlock repeat x5

256

256 256 256 128

: add
: concatenate

Figure 1. Network architecture. The network takes the positional
encoding of the surface-aligned representation γ6(X ) and the view
direction γ4(d

∗) along with the skeleton pose embedding zp and
outputs the density σ and the RGB color c. The number in each
block means the dimension of the input. All linear layers are fol-
lowed by ReLU activation except the output layers of color and
density.

and L = 4 for the surface-aligned representation and the
view direction, respectively. We use a three-layer, 256-
dimensional vanilla graph convolutional network (GCN) [1]
with ReLU activation for encoding the skeleton pose p ∈
R24×3 to an embedding z̃p ∈ R24×256 and then perform a
spatial average pooling to obtain a latent code zp ∈ R256.

B.2. Training settings

We basically refer to [3] for the training setting. We
use the single-level NeRF and sample 64 points along each
camera ray. For points that are far from the predicted SMPL
surface, we do not feed them into NeRF for faster training.
Specifically, for points with signed distance h > h0, our
model returns the zero density and color directly. We set
h0 = 0.2m in our experiments. We conduct the training on
a single Nvidia V100 GPU. Learning rate decreases expo-
nentially from 5e−4 to 5e−5 in training. The training typi-
cally converges in about 200k iterations, which takes about
14 hours.

1



C. Proof of injective mapping
We prove that the mapping x → X using proposed dis-

persed projection is an injection under certain conditions.
Specifically, we prove that, for spatial point x ∈ R3\I, the
mapping x → X is an injection, where I denotes the set of
all bilinear surfaces formed by the adjacent vertex normals
after vertex normal alignment for all the triangle faces of a
mesh. Since the volume of I is zero, any spatial point is
almost surely in R3\I.

The proof is based on the following assumptions:

Assumption 1. Meshes are watertight and do not have tri-
angle faces with zero area.

Assumption 2. The face normal of and the vertex normals
of every triangle form an acute angle.

Assumption 3. Any spatial point x ∈ R3 can be projected
onto the mesh surface through dispersed projection.

From the definition of dispersed projection, we notice
that for x ∈ R3\I, it will always be mapped to a surface
point s that is strictly inside a triangle face, i.e., not on
edges. In this case, the dispersed projection is reduced to
a barycentric interpolated projection based on the aligned
vertex normals for the triangle face. We first introduce the
following lemma:

Lemma C.1. If x ∈ R3\I is outside the mesh and mapped
to s through dispersed projection, then x−s = cns, c ∈ R+

is satisfied for all such x. Here s is a surface point that is
strictly inside a triangle face, and ns is a unit vector that is
invariant to x.

Proof. Consider a triangle T after vertex normal align-
ment as in Fig. 3(a) of the main paper. For triangle T =
(v1,v2,v3) and its parallel triangle T ′ = (v′1,v

′
2,v
′
3), by

the definition of barycentric interpolated projection, we can
obtain: {

x = α1v
′
1 + α2v

′
2 + α3v

′
3

s = α1v1 + α2v2 + α3v3

(1)
(2)

where (α1, α2, α3) is the barycentric coordinate. Combin-
ing the above equations we can obtain:

x− s = α1(v
′
1 − v1) + α2(v

′
2 − v2) + α3(v

′
3 − v3)

(3)

=
∑

i=1,2,3

αi(vi − v′i) (4)

vi − v′i = ‖vi − v′i‖nvi = (l / 〈nvi ,nT 〉)nvi , (5)

where l denotes the distance l between plane T and T ′, nvi

denotes the aligned vertex normal at vi, and nT denotes the

surface normal of T . Substituting Eq. (5) for Eq. (4) leads
to:

x− s =
∑

i=1,2,3

αi (l / 〈nvi
,nT 〉)nvi

(6)

= l

 ∑
i=1,2,3

(αi / 〈nvi
,nT 〉)nvi

 (7)

The term inside the parentheses of Eq. (7) is invariant to
x, and we describe its direction by a unit vector ns, which
gives:

x− s = cns, c ∈ R+ (8)

This concludes the proof.

We call ns in Eq. (8) an interpolated normal at s, which
only depends on the barycentric coordinates of s and the
mesh with aligned vertex normals. We then introduce the
following lemma:

Lemma C.2. For x ∈ R3\I, the mapping x → (s, h) is a
injection, where h = ‖x− s‖ (when x is outside the mesh)
or h = −‖x− s‖ (when x is inside the mesh).

Proof. We first prove the case of when x is outside the
mesh, i.e., h = ‖x− s‖. From the definition of h, it is
exactly c in Eq. (8), which gives:

x− s = hns (9)

Consider the following:

{
x1 − s1 = h1ns1

x2 − s2 = h2ns2

(10)
(11)

where s1 = s2, h1 = h2. For the same surface point s1 =
s2, they have the same interpolated normal, that is, ns1 =
ns2 . Therefore, from Eq. (10) and Eq. (11), we can obtain:

x1 = x2 (12)

Above equations indicate that:

(s1, h1) = (s2, h2)⇒ x1 = x2 (13)

which concludes that the mapping x→ (s, h) is a injection.
The case of when x is inside the mesh is proved similarly
by inverting the face and vertex normals of a triangle face
and applying Lemma C.1.

We finally introduce the following lemma:

Lemma C.3. The mapping s → sc is a injection, where sc
is the corresponding surface point on the T-pose mesh.



Proof. From Assumption 2, the shared T-pose mesh is wa-
tertight and thus does not have self-intersection. From the
definition of sc, that is, sc is inside the same triangle with
the same barycentric coordinates as s, the proof is triv-
ial.

From Lemma C.2 and Lemma C.3, we prove that for
x ∈ R3\I, the mapping x→ X is an injection.

Proof. Lemma C.3 indicates that

sc1 = sc2 ⇒ s1 = s2. (14)

Considering h1 = h2(h1, h2 ∈ R), it immediately follows
that

(sc1, h1) = (sc2, h2)⇒ (s1, h1) = (s2, h2). (15)

Combining Eq. (13) and Eq. (15), we can obtain

(sc1, h1) = (sc2, h2)⇒ x1 = x2, (16)

which is exactly

X1 = X2 ⇒ x1 = x2. (17)

This concludes the proof.

References
[1] Thomas N. Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. In ICLR, 2017.
1

[2] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In ECCV, 2020. 1

[3] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes for
novel view synthesis of dynamic humans. In CVPR, 2021. 1


	. Algorithms
	. Implementation details
	. Network architecture
	. Training settings

	. Proof of injective mapping

