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1. Detailed Calculation of Metrics

Re-scoring Calculation. This designed metric is used to
quantitatively evaluate the editing performance. It is de-
sirable that when editing, the edited attribute will change
towards the targeting direction as much as possible, while
other attributes remain as less impacted as possible. For
example, when editing an attribute towards the plus di-
rection, we expect the score to increase. The amount of
change could be quantitatively evaluated using trained clas-
sifiers. More specifically, by adding the score difference of
the edited attribute between each editing step, the accumu-
lated change could be calculated. Denote the accumulated
change of edited attribute as Ce, that of the influenced at-
tribute as Ci, then it is optimal when Ce is as large as pos-
sible and Ci is as small as possible. Therefore, the ratio
Ci/Ce measures the degree of another attribute being influ-
enced when performing the editing. Note if only Ci is mea-
sured as evaluation, the value will be the smallest between
two identical images, thus failing to describe the editing per-
formance. Moreover, when the value of Ci are identical, a
larger Ce represents more change in the desired attribute,
which is desirable for the editing task.

In our experiments, for each attribute, we generate
4,000 images and perform editing. Then the corresponding
trained attribute classifier [2] is used to re-score the edited
images, resulting in 28,000 scores (6 steps and the origin
image) for each attribute.
Identity Re-scoring Calculation. To qualitatively evalu-
ate the change of identity during editing, we also utilize the
trained Inception v3 [11] model to extract perceptual fea-
tures from images. The calculation of this metric is similar
to the Re-scoring Calculation above. The cosine similarity
of the extracted feature between the images at each step will
be calculated, and its accumulated value, denoted as Cid,
measures the amount of change in identity. The meaning
and calculation of Ce are identical to the Re-scoring Calcu-
lation. A smaller value of Cid/Ce means better preservation

of identity when editing the attribute.
Learned Perceptual Image Patch Similarity (LPIPS).
LPIPS [12] measures the diversity of a latent space. A larger
LPIPS score indicates a more diverse space. Since there are
two spaces, we perform this calculation similar to DAT [9].
LPIPSz is calculated by sampling 40 z codes with a fixed
p code. Similarly, LPIPSp is calculated by sampling 40 z
codes with a fixed p code. For LPIPSall, it is calculated
by sampling 40 pairs of z and p codes. All the processes
are repeated by 1,000 times.
Frechet inception distance (FID). FID [4] measures the
image generation quality by calculating the feature differ-
ence between the real images and the generated images. A
smaller FID value implies a better generation quality.

2. Datasets
CelebA-HQ. CelebA-HQ [5] contains 30,000 celebrity face
images with a resolution of 1024 × 1024. The images are
annotated with 40 attribute labels.
FFHQ. FFHQ [6] contains 70,000 high-quality face images
with a resolution of 1024 × 1024. FFHQ contains more
changes in terms of hue, age, and background than CelebA-
HQ.

3. Implementation Details
3.1. Dual Latent Space and Mapping Functions

In our experiments, both the dimension of Z-space and
P-space are set to be 16 × 512. Each latent vector zi ∈
1 × 512 and pi ∈ 1 × 512. Their corresponding mapping
functions, Mzi

and Mpi
are MLPs that map zi to z+

i ∈
1× 512 and pi to p+

i ∈ 1× 512.

3.2. Transformer-Based Interaction

For interaction at each layer, we utilize a Transformer-
based multi-head attention module. In our model, we set



the number of Transformer layers to be 8 and the dimen-
sion of the latent code input to Transformer to be 512. The
number of heads in the multi-head cross attention mod-
ule is set to be 8 so the dimensionality for each head is
dk = 512/8 = 64. Besides, we add positional encoding
to both latent codes from Z-space and P-space before the
first Transformer layer. The positional encoding matrix is
an identity matrix of size 16× 16.

3.3. Training Details
Since two latent spaces are used in the proposed

TransEditor, the optimization objective can be written as:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

E(z,p)∼p(Z×P)(z,p)[log(1−D(G(z,p)))].
(1)

As mentioned, we only apply the adversarial loss [3] and
Path Length Regularization used in StyleGAN2 [7]. For the
adversarial loss, similar to StyleGAN2, it is composed of
non-saturating loss, i.e., f(t) = softplus(t) = log(1 +
exp(t)). For the generator,

LG = λadvf(−D(G(z,p)))+λpath reguLpath regu, (2)

and Lpath regu is the path length regularization. For the
discriminator,

LD =λdis[f(D(Xfake)) + f(−D(Xreal))]

+ λd reguLd regu,
(3)

where Ld regu is the gradient regularization for the discrim-
inator.

The training of FFHQ [6] and CelebA-HQ [5] are per-
formed on the resolution of 256 × 256. We set λd regu

to 10, Lpath regu to 2, λadv and λdis to 1 in our training.
For CelebA-HQ, we utilize 29,000 images as the training
set, with 1,000 left for testing. Then we train the model
to 370,000 iterations with a batch size of 16 using 8 cards.
For FFHQ, we utilize 69,000 and 1,000 images for training
and testing, respectively. The model is trained to 800,000
iterations with the batch size of 16 on a single card.

3.4. Dual Space Inversion and Editing
The loss functions used in our Dual Space Inversion are

similar to pSp [10]. We apply the same pixel-wise L2 loss,
LPIPS loss, and ID loss as in pSp [10]. Their weight is
set to be 1.0, 0.8, and 0.1, respectively. For both datasets,
we train the Dual Space Inversion network to 500,000 iter-
ations, with a batch size of 8.

For Dual Space Editing, auxiliary attribute classifies [2]
are used. Specifically, we randomly sample 150,000 pairs
of z ∈ Rn×512 codes and p ∈ Rn×512 codes from a stan-
dard normal distribution and map them to z+ and p+ for

image generation. Then for each attribute, the correspond-
ing classifier will be used for scoring on the generated im-
ages. We then train an SVM classifier with z+ and the score
for attribute i as training data and labels, thus finding the
normal vector nz of the partition interface corresponding to
attribute i in Z+-space. Similarly, we obtain the normal
vector np in P+-space. Thereafter, we can move λz steps
along nz and λp steps along np to get the new latent codes
(z+ + λz ∗ nz,p

+ + λp ∗ np). We can flexibly adjust λz

and λp to control the contribution of each space to the final
editing of different attributes. For example, if we set λz to
0, Z+-space is fixed, and only P+-space is altered. This
diagram can be applied to smile editing (Fig. 8a). Similarly,
if we set λp to 0, P+-space is fixed, and only Z+-space is
altered. This diagram can be applied to pose editing (Fig. 5,
Fig. 6). For gender (Fig. 7a) and age (Fig. 9b) editing, both
λz and λp are adjusted.

4. More Results and Analysis
4.1. More Ablation Study
Trials of Training Techniques. The Path Length Regular-
ization in StyleGAN2 [7] is used to smooth the latent space
W , which is minimized when changing a fixed step of the
latent code will result in a fixed-magnitude change in the
image. In our design, the space that corresponds to W in
StyleGAN2 [7] is the output of our cross-space interaction.
Since it is not desired that any certain layer of the W space
be dominant, we utilize the same regularization loss on our
W space.

We have also experimented to add the regularization loss
on the P+-space. The result shows that this will discourage
the P+ to influence the final result. When this regulariza-
tion loss is added on the P+-space, changing the entire p
code will only result in a little change in the generated im-
age, which is undesirable since we need more balanced dual
spaces for editing.
Number of Transformer. The number of Transformer lay-
ers is related to the degree of interaction. When the number
of layers gets larger, the z+ code will be queried by the p+

code more, resulting in a stronger correlation. We experi-
mented with different number of Transformer, and the result
shows that using more layers will result in better head pose
consistency when p+ code is fixed, although the difference
is not significant. In most of our settings, we utilize 8 layers
of Transformers.
Alternative interaction module (e.g., MLP). The ablation
study on Space Interaction via Transformer has shown its
cruciality. Our design of using P-space as the query estab-
lishes a connection between the two spaces while ensuring
their disentanglement. We have also tried other interaction
modules, e.g., MLP. Although MLP can create a linkage,
the results of which are inferior to the Transformer-based
interaction module due to the entanglement caused by MLP.
For instance, the Pose-Identity re-scoring (↓) result of the
MLP variant is 7.024 compared with our result of 2.326
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(b) Smile
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Figure 1. Real Image Editing Comparison. Images on the first column are the real source images. The fourth column shows the
reconstruction results, which are semantically interpolated to the left and right sides.

Table 1. Re-scoring metrics of w/o or w/ Transformer.

Pose↓ Gender↓
Method w/o Transformer Ours w/o Transformer Ours

Pose - - 0.504 0.231
Gender 0.782 0.313 - -

Quantitative comparison of editing w/o or w/ Trans-
former. To further show the importance of the cross-space
interaction, a similar re-scoring evaluation is conducted on
our dual-space model w/o and w/ Transformer. Tab. 1
shows that adding the Transformer to introduce interaction
between latent spaces clearly improves the editing perfor-
mance.

4.2. More Comparison with State of the Art
Fig. 1 shows more editing results of real images com-

pared with other methods. StyleMapGAN [8] is prone to
face distortion when editing attributes. DAT [9] and Style-
GAN2 [7] are prone to hue changes. Our model TransEd-
itor achieves the best editing performance. In Fig. 2,
we provide an additional comparison with w+ space (Im-

Table 2. Identity Re-scoring Calculation. Compared between
StyleGAN2 [7], StyleMapGAN [8], DAT [9], and the proposed
TransEditor (Ours).

ID↓

Method StyleGAN2 StyleMapGAN DAT Ours

Pose 7.528 25.668 28.693 2.326
Gender 1.240 1.209 1.323 1.135

age2StyleGAN [1]) using the same optimization approach
for inversion. Our method still achieves the best results.

Tab. 2 shows the results of Identity Re-scoring on com-
plicated attributes pose and gender, compared with other
methods. For DAT [9] and TransEditor, the pose is edited
using content space and P-space, respectively, since the
structure information is contained in those spaces. Gender
is edited using two spaces simultaneously. The result in the
first row shows the identity preservation during pose edit-
ing. Our method surpasses others by a large margin. This
observation is consistent with our quantitative observation
on the pose editing results in the main text. Tab. 3 shows
the FID metric compared with other methods.
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Figure 2. Pose editing comparison.

Table 3. FID Comparison. All method are trained on FFHQ at
the resolution of 256.

Method FID ↓
StyleGAN2 [7] 4.44

StyleMapGAN [8] 15.9
DAT [9] 22.50

Ours 9.32

4.3. More Visualization Results

Similar to the performance on the CelebA-HQ
dataset [5], our dual latent spaces also achieve a cer-
tain degree of semantic separation on the FFHQ dataset [6],
with P-space controlling structural information like pose
and Z-space controlling texture information (see Fig. 3,
Fig. 4).

The remaining figures show more editing results of
TransEditor on different attributes and different datasets.
Fig. 5 and Fig. 6 are the pose editing results on the two
datasets. Only P-space is used for pose editing. Gen-
der editing results are shown in Fig. 7a and Fig. 7b. As
mentioned in the main text, the editing of gender utilizes
both spaces. Fig. 8 shows the smile and wavy hair edit-
ing on CelebA-HQ [5], they are performed on Z-space and
P-space respectively. Fig. 9a shows the results of black
hair editing using Z-space on CelebA-HQ [5], and Fig. 9b
shows the results of age editing on FFHQ [6]. Since change
of age might involve both structure and texture variation,
the editing of age is accomplished using both P-space and
Z-space simultaneously.
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(a) Fix the p code and sample z code (b) Fix the z code and sample p code

Figure 3. Example of disentanglement of dual latent spaces on the FFHQ-256 dataset. Each column in (a) is generated by a fixed p
code and a randomly sampled z code. Note that re-sampling the z code would not influence the head pose. Similarly, for (b), each column
shares the same z code. The images generated bare similar lighting, hair color, skin color. This shows the semantic disentanglement of
dual latent spaces of TransEditor.

(a) Interpolate z code (b) Interpolate p code

Figure 4. Examples from interpolated dual space latent codes on the FFHQ-256 dataset. In sub-figure (a), each raw has the same z
code and interpolated towards the same direction. Each column has the same sampled p code. Notice that the interpolation of the style
code gradually changes the hair color, background, and minor facial expression changes without having any effect on the person’s head
pose. Similarly, for the sub-figure (b), each column shares the same z code and each row shares the same p code. The interpolation of the
p code changes the pose along the same direction. Notice that during interpolation, the texture information remains similar.



Figure 5. Pose editing of the sampled images on CelebA-HQ-256 dataset. Images on the fourth column are the sampled source images,
which are semantically interpolated to the left and right sides.



Figure 6. Pose editing of the sampled images on FFHQ-256 dataset. Images on the fourth column are the sampled source images, which
are semantically interpolated to the left and right sides.



(a) Gender editing on FFHQ-256 dataset. (b) Gender editing on CelebA-HQ-256 dataset.

Figure 7. Gender editing of the sampled images on FFHQ-256 dataset (a) and CelebA-HQ-256 dataset (b). Images on the third
column are the sampled source images, which are semantically interpolated to the left and right sides.



(a) Smile editing on CelebA-HQ-256 dataset. (b) Wavy Hair editing on CelebA-HQ-256 dataset.

Figure 8. Sampled Image Editing on CelebA-HQ-256 dataset. Images on the third column are the sampled source images, which are
semantically interpolated to the left and right sides.



(a) Black Hair editing on CelebA-HQ-256 dataset. (b) Age editing on FFHQ-256 dataset.

Figure 9. Sampled image editing on CelebA-HQ-256 dataset (a) and FFHQ-256 dataset (b). Images on the third column are the
sampled source images, which are semantically interpolated to the left and right sides.
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