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A. Author Contribution

The first four authors contribute equal to this research
project. Among them, Hongwei Xue is responsible for
model design, implementation of pre-training model and
downstream video QA tasks. Tiankai Hang helps the model
design, environment building for distributed training, and
apply the pre-trained model for downstream extreme text-
guided super-resolution task. Yanhong Zeng is in charge
of the text-to-visual generation part, including the creation
of dataset (FDVD), design and implementation of text-to-
visual editing. Yuchong Sun is responsible for collecting
and processing HD-VILA-100M dataset, discussing model
design and implementation of downstream video-text re-
trieval tasks. Bei Liu, Huan Yang and Jianlong Fu over-
see the whole project, including dataset collection and pro-
cessing, pre-training model and downstream tasks design.
Baining Guo provides valuable suggestions in paper orga-
nization and writing.

B. Limitation and Social Impact

The proposed video-language dataset and pre-training
model show the capacity and generalization of learned
video-language representation which could benefit many
applications of computer vision and natural language pro-
cessing. Pre-training with large scale of data results in
much computation resource. How to reduce the model size
and computing effort becomes more essential for future re-
search. In addition, the usage of user generated data might
bring the risk of bias. We tackle this problem by balanc-
ing various video categories, yet the videos might contain
biased content. Moreover, how to avoid malicious usage of
visual generation technique for conscious attack is also crit-

*Equal contribution in alphabetical order. This work was performed
when Hongwei Xue, Tiankai Hang, Yanhong Zeng and Yuchong Sun were
visiting Microsoft Research Asia as research interns. Corresponding au-
thors: Bei Liu, Huan Yang, Jianlong Fu.

ical. However, these concerns are general to the entire fields
and are not amplified by this work.

C. HD-VILA-100M Dataset Details

C.1. Video Duration and Transcript Length

We plot the histogram of video clip duration and tran-
script length in Figure 1a and Figure 1b, respectively. From
Figure 1a, we can see that most video clips in our dataset
is between 5s to 15s, with an average of 13.4s. From Fig-
ure 1b, most sentences in HD-VILA-100M are between 15
words to 50 words, with an average of 32.5 words.

C.2. Semantic Richness

To analyze the semantic richness, we calculate the
average unique n-grams and part-of-speech (POS) tags
of transcriptions. We mainly compare them with
HowTo100M [12] dataset as shown in Table 1. From the
result, we can find that the sentences in our dataset have
more n-grams and POS tags, which indicates more richness
and diversity of semantics in our HD-VILA-100M dataset.

C.3. More Examples of HD-VILA-100M Dataset

Since we use transcripts as corresponding sentences for
videos, the video-sentences are actually not all well aligned
compared with video captioning datasets. Indeed, most of
them are weakly related. We conduct an interesting exper-
iment which uses our pre-trained model with the weakly
aligned pairs to compute the similarity of these pairs. We
show some examples with similarity scores in Figure 2. We
can see that the pairs with higher score are well aligned.
This indicates that, even with the weakly aligned video-
transcript pairs, our pre-training model can learn a powerful
embedding space between video and language. The similar-
ity score distribution of video and text pairs in HD-VILA-
100M is shown in Figure 1c.
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(a) Distributions of video duration.
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(b) Distributions of sentence length.
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(c) Video-text similarity distribution.

Figure 1. More detailed statistics of HD-VILA-100M dataset.

Dataset
# avg unique n-grams # avg POS tags

2-gram 3-gram 4-gram noun adj adv verb

HowTo100M [12] 1.77 2.08 1.46 2.25 0.85 0.68 0.20
HD-VILA-100M 4.18 13.08 20.89 6.63 1.88 2.07 5.09

Table 1. Statistics of average unique n-grams and POS tags. Our dataset has more unique n-grams and POS tags than HowTo100M [12].
The result indicates the transcriptions in HD-VILA-100M have richer and more diverse semantics.

D. Experiment Details

D.1. Video QA

MSRVTT-QA. MSRVTT-QA [20] is created based on
video and captions in MSR-VTT [21], containing 10K
videos and 243K open-ended questions. We follow the orig-
inal work to use an answer vocabulary containing the most
common 1.5K answers in the training and validation split
as answer candidates. For each video, we randomly sample
one segment for training and uniformly sample eight seg-
ments for testing. We resize HR frame of each segment to
720p and LR frames to 180p. In this task, we set #HR as
1 and #LR as 6. We use AdamW for optimization, with an
initial learning rate of 1e-5, weight decay of 0.3, and set
learning rate warm-up over the first 10% training steps fol-
lowed by linear decay to 0. To alleviate over-fitting, we set
dropout of Transformers to 0.1. We fine-tune our model on
8 NVIDIA Tesla V100 GPUs for 20 epochs with a batch
size of 512. Gradient accumulation is applied to reach this
batch size.

MSRVTT Multiple-Choice. MSRVTT multiple-choice
test [22] is a multiple-choice task with videos as queries,
and captions as answers. Each video contains five candidate
captions, with only one positive match. The benchmark has
2,990 questions for the multiple-choice test. We directly in-
ference our model trained on MSRVTT-Retrieval dataset to
find the most positive match.

TGIF-QA. TGIF-QA [3] contains 165K QA pairs on 72K
GIF videos. We experiment with three TGIF-QA tasks: Ac-
tion, Transition and FrameQA. We randomly sample one
segment for training and uniformly sample eight segments
for testing. Each segment contains 1 HR frame and 6
LR frames for Action and Transition, 10 LR frames for
FrameQA. Other settings are listed in Table 2. We use
AdamW for optimization, and We fine-tune our model on
8 V100 GPUs, Gradient accumulation is applied to reach
batch sizes listed in Table 2.

Action Transition FrameQA

Epoch 80 80 40
Batch Size 384 384 448
Learning Rate 5e-5 5e-5 4e-5
Weight Decay 0.05 0.05 0.3
Drop Out 0.1 0.3 0.1

Table 2. Details of training Video QA on TGIF dataset.

D.2. Text-to-Video Retrieval

Due to the various resolution for videos in downstream
datasets, we resize HR frame of each segment to 720p and
LR frames to 180p. We adopt stage one model and the same
training methods and objective for fine-tuning. We set the
temperature to 0.08. We use learning rate warmup followed
by multi-step learning rate decay. We adjust the number of
sampled segments and frames according to the average time
of videos for each dataset to cover about half of the video.
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Figure 2. More examples of HD-VILA-100M with similarity scores calculated by HD-VILA. Relevant words are highlighted in red. [Best
viewed in color.]



Question: What does the person do 2 times ?      Answer: trip opponent

Question: What does the man do 2 times?      Answer: wave

Question: What does the woman with blonde hair do 3 times?      Answer: nod head

Question: What does the man do 4 times ?      Answer: blink eyes

Figure 3. Some examples for video QA task. We take TGIF Action for example to demonstrate our model’s ability to learn temporal
information from videos.

For evaluation, we double the number of segments. More
details for each tsak are given below

MSR-VTT. MSR-VTT [21] contains 10K YouTube
videos with 200K descriptions. We follow previous
works [8, 22], training models on 9K videos, and report-
ing results on the 1K-A test set. For zero-shot evaluation
on low-resolution MSR-VTT videos, we uniformly sample
4 segments each with 11 frames. We crop a 224×320 patch
for each frame and up-sample the middle frames by 4 times.
In this setting, the sampled segments can nearly cover the
videos on average. We remove the stop words in the text
as [11]. We report the result of the last saved model of HD-
VILA. When finetuning, we sample 2 segments for training
and 4 segments for testing and each segment contains 11
frames. We use AdamW optimizer with an initial learning
rate of 1e-5. We fine-tune the pre-trained model with 32 V
100 GPUs and the total batch size is 256.

DiDeMo. DiDeMo [1] consists of 10K Flickr videos an-
notated with 40K sentences. We follow [8, 23] to evalu-
ate paragraph-to-video retrieval, where all descriptions for
a video are concatenated to form a single query. When fine-
tuning, we sample 4 segments for training and 8 segments
for testing and each segment contains 11 frames. We use

AdamW optimizer with an initial learning rate of 5e-6. We
fine-tune the pre-trained model with 16 V 100 GPUs and
the total batch size is 64.

LSMDC. LSMDC [15] consists of 118,081 video clips
sourced from 202 movies. Each video has a caption. Eval-
uation is conducted on a test set of 1,000 videos. When
finetuning, we sample 2 segments for training and 4 seg-
ments for testing and each segment contains 11 frames. We
use AdamW optimizer with an initial learning rate of 5e-6.
We fine-tune the pre-trained model with 8 V 100 GPUs and
the total batch size is 64.

ActivityNet. ActivityNet Captions [7] contains 20K
YouTube videos annotated with 100K sentences. We follow
the paragraph-to-video retrieval protocols [8,23] training on
10K videos and reporting results on the val1 set with 4.9K
videos. When finetuning, we sample 4 segments for train-
ing and 8 segments for testing and each segment contains
13 frames. We use AdamW optimizer with an initial learn-
ing rate of 5e-6. We fine-tune the pre-trained model with 16
V 100 GPUs and the total batch size is 64.
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Figure 4. Overview of our text-guided generation framework.
The framework consists of 1) two multi-modal encoders, 2) two
mapper modules, and 3) a pre-trained StyleGAN [5]. First, the
multi-modal encoders encode a video clip and a sentence to a vi-
sual and a text embedding, respectively. Second, the mapper mod-
ules map the embedding to the latent codes of StyleGAN. Finally,
StyleGAN maps the latent codes w/ and w/o text information to
images. See more details in Section D.3.1.

D.3. Text-to-Visual Generation

In this section, we introduce more details about text-to-
visual generation tasks as a supplement to Section 5.4 in
the main paper. We introduce the details of model design in
Section D.3.1 and optimization objectives in Section D.3.2,
following the introduction of our collected dataset of video-
description pairs of the human faces in Section D.3.3. We
provide more generation results and experimental analysis
in Section D.3.4.

D.3.1 Model Design

To achieve the text-to-visual generation tasks by our pre-
trained model HD-VILA, we follow previous works to com-
bine the cross-modality encoders of HD-VILA and a well
pre-trained generation model, StyleGAN [5], in our frame-
work [13,19]. The overview of our text-to-visual generation
framework is shown in Figure 4. Specifically, our frame-
work consists of three key components, including 1) two
multi-modal (visual/text) encoders, 2) two visual/text map-
per modules, and 3) a pre-trained StyleGAN. We introduce
more details of each component as below.

Multi-Modal Encoders To deal with multi-modal inputs,
we inherit the hybrid video encoder and the language en-
coder from our pre-trained model HD-VILA. Specifically,

the hybrid video encoder takes as input a hybrid image se-
quence and outputs a visual embedding representing the in-
put vision content. At the same time, the language encoder
encodes the sentence into a text embedding that shares a
joint embedding space with the visual embedding. Thanks
to the large-scale pre-training on the proposed HD-VILA-
100M dataset, the multi-modal encoders are able to pro-
vide vision-aware text embedding and text-aware vision
embedding, which benefits downstream generation tasks.
We denote the visual embedding and the text embedding
as v, t ∈ R1024 respectively.

Visual/Text Mappers Since the output embedding v, t ∈
R1024 of multi-modal encoders and the latent codes w+ ∈
R18×512 used for generation lie in different feature spaces,
we build a visual mapper and a text mapper to bridge the
gap between different feature spaces. Specifically, the map-
ping f is implemented using several layers MLP. It maps
the embedding v, t to w+

v ,w
+
t ∈ R18×512,

w+
v = fv(v), w+

t = ft(t), (1)

where fv, ft denote the mapping functions.

Generator (StyleGAN) Since StyleGAN has shown
high-fidelity generation quality and impressive disentan-
glement property, we follow previous works to leverage a
StyleGAN for generation [5,13,19]. Specifically, we incor-
porate a well pre-trained and fixed StyleGAN to generate
images from the latent codes from mappers w+

v and w+
t .

In practice, the latent code w+
v is optimized to recon-

struct the high-quality middle frame in the input hybrid im-
age sequence, while the latent code w+

v is optimized to
learn the editing directions according to the input sentences.
Such a design enables keeping the information from visual
inputs, as well as generating novel visual results according
to the text inputs. We denote the reconstructed output and
the text-guided output as:

Irec = G(w+
v ), (2)

Iedit = G(w+
v +w+

t ), (3)

where G denotes the synthesis network of StyleGAN.

D.3.2 Optimization Objectives

To ensure per-pixel reconstruction accuracy, high-quality
visual generation, identity preservation, and matching with
the descriptions of the generated results, we carefully se-
lect a pixel-wise L2 loss, a LPIPS loss [24], an identity
loss [14], and a text-visual matching loss as our optimiza-
tion objectives following common practices [13,14,18,19].
Specifically, the pixel-wise `2 loss is denoted as:

`2(I, Î) = ||I− Î||2, (4)



where I denote the high-quality middle frame. LPIPS is a
deep metric that is able to reflect image quality similar to
human perceptual [24], and the LPIPS loss is denoted as:

`lpips(I, Î) = ||F(I)−F(Î)||2, (5)

where F denotes the perceptual feature extractor. We fol-
low Richardson et al. to incorporate an identity recognition
loss to measure the cosine similarity between the output im-
age and its target [14],

`id(I, Î) = 1−
〈
R(I),R(Î)

〉
, (6)

where R is a pre-trained network for face feature extractor,
and 〈·, ·〉 denotes cosine similarity calculation. To ensure
the matching between the text-guided output and the input
text, we follow StyleCLIP [13] to include a matching loss
for optimization. In particular, the matching loss aims at
minimizing the feature distance between the output image
and the text,

`clip(T, Î) = 1−
〈
C(T), C(Î)

〉
/ γ, (7)

where C is a pre-trained image-text feature extractor, T de-
notes the text input, and γ is a constant value that normalize
the similarity value to the range of [0,1]. In practice, we set
the value of γ as 100. The overall optimization objectives
are concluded as:

` = λ1 · `2(I, Irec) + λ2 · `lpips(I, Irec) + λ3 · `id(I, Irec)
+λ4 ·`2(I, Iedit)+λ5 ·`lpips(I, Iedit)+λ6 ·`id(I, Iedit)
+ λ7 · `clip(T, Iedit).

(8)

Implementation Details We empirically set the loss
weights for different generation tasks. For text-guided edit-
ing, we set λ1 = 1.0, λ2 = 0.8, λ3 = 0.1, λ4 = 0.1, λ5 =
0.1, λ6 = 0.1, λ7 = 1.0. For text-guided super-resolution,
we set λ1 = 0, λ2 = 0, λ3 = 0, λ4 = 0.1, λ5 = 0.8, λ6 =
1.0, λ7 = 0.1. We use a fixed learning rate 1e − 5 for the
training of the multi-modal encoders, and a fixed learning
rate 1e− 3 for the visual/text mappers. We use Adam opti-
mizer with (β1, β2) = (0.9, 0.99) for training [6]. We train
the models for 200K iterations in total on 4 NVIDIA Tesla
V100 GPUs.

D.3.3 Face-Description-Video Dateset (FDVD)

To demonstrate the effectiveness of our text-guided gen-
eration framework on videos, we collected a dataset of
video-description pairs of the human faces, named Face-
Description-Video Dateset (FDVD). FDVD consists of
613 video-description pairs, resulting in 74,803 frames of
human faces and 6,130 sentences in total. Specifically, each

video-description pair consists of one high-resolution video
(1024× 1024 spatial size) and ten different descriptive sen-
tences. We introduce the collection process as below.

To generate high-quality videos of human faces, we col-
lected videos from Ryerson audio-visual dataset [10]. For
the pre-processing, we first use the facial landmark loca-
tions to select an appropriate crop region for the talking
head, then we perform a high-quality up-sampling to obtain
the final videos at 1024 × 1024 resolution following [4].
To generate diverse descriptions for each video, we adopt
a strategy of prediction-and-generation. First, we use a fa-
cial attribute predictor [9] to obtain a list of attributes for
the videos. Then we follow previous best practices to use
PCFG rule-based algorithm to generate descriptions from
the given attributes [17, 19]. Each description contains dif-
ferent subsets of the attributes to increase the diversity of
descriptions. We will release the dataset for research pur-
poses.

D.3.4 Experiments

Text-Guided Editing To demonstrate the effectiveness of
our text-guided generation framework, we show the quali-
tative comparison of text-guided editing results in Figure 5.
Specifically, we compare our full model with the one with-
out pre-training, StyleCLIP [13] and TediGAN [19]. Style-
CLIP and TediGAN are two state-of-the-art text-guided
editing approaches. Both of them combine the strong gen-
erative powers of StyleGAN with text input for editing.
Specifically, StyleCLIP maps a text prompt into an input-
agnostic direction in StyleGAN’s style space [13], and Tedi-
GAN proposes to map the text into StyleGAN’s style space
directly. We use the released code provided by the authors
on their official homepage to obtain the results in Figure 5.

The results in Figure 5 show that our pre-trained model
can benefit the downstream text-guided editing task and
achieve state-of-the-art performance. Take the first case as
an example, our model without pre-training tends to make
the lips bigger when it wears the lipstick, and StyleCLIP
and TediGAN fail to attend to the keyword “eyeglasses” in
the natural but relatively complex descriptions. Thanks to
the power of our pre-trained model, our generation frame-
work is able to attend to multiple attributes and edit the im-
ages accurately.

We also provide a video demo generated by our full
model in this supplementary material (video.mp4). The
video demo consists of 10 video cases. In each case, we
show the input on the left, our result on the right, and the
input description on top. We take as input a video clip and
a target description as input and generate the videos frame-
by-frame. The video demo shows that our model shows
promising text-guided video editing performance.



She wears eyeglasses and red lipstick.

The man has black hair and high cheekbones. 

The woman has rosy cheeks and blond hair.

This person has bangs and he is smiling.

The man is chubby and has double chins. He is wearing eyeglasses.

She has gray and straight hair.

Input Ours Ours w/o pre StyleCLIP TediGAN

Figure 5. Qualitative comparison of text-guided editing results. We show from left to right the inputs, results of our full model, results
of our model without pre-training, results of StyleCLIP [13] and TediGAN [19]. The comparison shows that our pre-trained model can
benefit the downstream text-guided editing task and achieve state-of-the-art performance. Due to the vision-aware text embedding learned
from pre-training, our full model is able to attend to “She”, “eyeglasses” and “rep lipstick” in the first case and accurately edit the images
accordingly.



The man has high cheekbones, big nose, and eyeglasses

This man is smiling and has goatee.

The man has bags under eyes.

This person is smiling, and has bushy eyebrows.

The woman has big lips, oval face, arched eyebrows

This smiling person has brown hair, pointy nose, and straight hair.

Input Ours Ours w/o pre. SR3 pSp

Figure 6. Qualitative comparison of more super-resolution results. We show from left to right the inputs, results of our full model,
results of our model without pre-training, results of SR3 [16] and pSp [14]. Our pre-trained model could generate realistic results with
more textual attributes (e.g., eyeglasses in the first example, big lips and arched eyebrows in the 5-th example) due to the power of our
pre-trained model.



Text-Guided Super-Resolution The results of the super-
resolution task are presented in Figure 6. We take rela-
tive low resolution images (16 × 16) as input(1-st column)
and generate high-resolution results (2-nd column). We
train our framework from scratch and present the results in
3-rd column, which fail to capture some textual informa-
tion. Two other strong baselines we adopt are SR3 [16] and
pSp [14]. Their results are presented in the 4-th and 5-th
colomn respectively. Our pre-trained model could generate
realistic results with more textual attributes (e.g., eyeglasses
in the first example, big lips and arched eyebrows in the 5-th
example). Super-resolution is an ill-posed problem, which
means a low-resolution image may be downsampled from
different high-resolution images. The details can’t be well
constructed with our text. How to keep the consistency be-
tween consensus frames and save the details (e.g., hair) are
still worth exploration. Besides, the pre-trained and fixed
StyleGAN [5] are trained on a dataset with specific distri-
bution and may introduce bias. With our general and diverse
data, we hope we could alleviate the problem in the future.

D.4. Ablation Study on Data Domain

Methods Steps R@1 ↑ R@5 ↑ R@10 ↑ MedR ↓

HowTo100M [37] - 8.2 24.5 35.3 24.0
Ours (HowTo100M) 145K 15.7 38.3 51.3 10.0
Ours (HD-VILA-100M) 145K 6.6 19.5 27.6 37.0
Ours (HD-VILA-100M) 504K 9.1 25.5 37.3 20.0

Table 3. Comparison of pre-training datasets on YouCook2 retrieval

We conduct text-to-video retrieval task on
YouCook2 [25] to check whether pre-training with in-
domain dataset could benefit downstream tasks. We can see
that although our model pre-trained on HD-VILA-100M
outperforms HowTo100M model in their paper, our model
pre-trained on HowTo100M performs best in limited
epochs. This shows pre-training on in-domain dataset
could benefit VL tasks very much.

E. Datasheet for HD-VILA-100M

In this section, we provide a DataSheet [2] for HD-
VILA-100M.

E.1. Motivation

• For what purpose was the dataset created? We pro-
vide this dataset in order to explore multi-modality
representation learning with large scale of video-
language data available in the Internet. Previous
datasets are limited in scale and diversity. A large-
scale video-language dataset is crucial for the research
community.

• Who created the dataset (e.g., which team, research
group) and on behalf of which entity (e.g., company,
institution, organization)? This dataset was created
by Microsoft Research Asia.

E.2. Composition

• What do the instances that comprise the dataset
represent? The instances of this dataset are video and
each video is paired with ASR transcripts aligned over
time.

• How many instances are there in total? We include
3.3 million videos. Altogether, we extracted 103 mil-
lion video clips with ASR transcripts from this data.

• Does the dataset contain all possible instances or is
it a sample (not necessarily random) of instances
from a larger set? It is a sample. We only keep videos
with quality higher or equal to 720p from the YouTube
website. The dataset covers 15 popular categories with
a wide range of topics from YouTube to make it more
representative.

• What data does each instance consist of? The in-
stance consist of a short video clip with an average du-
ration of 13.4 seconds and an ASR transcript with 32.5
words in average.

• Is there a label or target associated with each in-
stance? We use ASR transcripts as the labels of video
clips in this dataset.

• Is any information missing from individual in-
stances? No.

• Are relationships between individual instances
made explicit? Not applicable. The relationship be-
tween videos is not the focus in our study, though it
could be possible for future work.

• Are there recommended data splits? No. We build
this dataset only for pre-training so we have not created
validation set this time.

• Are there any errors, sources of noise, or redun-
dancies in the dataset? Yes. The ASR transcripts
are often noisy with mistakes. Although we use some
methods to clean the data, there are still errors we can-
not fix.

• Is the dataset self-contained, or does it link to or
otherwise rely on external resources? The dataset is
self-contained. However, we plan to only release the
URLs of videos and the code for preparing data. This
can protect user privacy in case some videos will be
deleted by YouTube users.



• Does the dataset contain data that might be consid-
ered confidential? No. We only contain videos that
are public to everyone on YouTube.

• Does the dataset contain data that, if viewed di-
rectly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? Yes, some videos in
the YouTube are. We try our best to decrease the num-
ber of offensive videos by avoiding offensive topics.

• Does the dataset identify any subpopulations (e.g.,
by age, gender)? Not explicitly (e.g., through labels).

• Is it possible to identify individuals, either directly
or indirectly from the dataset? Yes, our data includes
celebrities, or other YouTube-famous people. All of
the videos that we use are of publicly available data,
following the Terms of Service that users agreed to
when uploading to YouTube.

• Does the dataset contain data that might be consid-
ered sensitive in any way? Yes, some of YouTube
videos might be. We try to avoid this by removing
sensitive topics.

E.3. Collection Process

• How was the data associated with each instance
acquired? The dataset is directly observable from
YouTube.

• What mechanisms or procedures were used to col-
lect the data? We collect the dataset using YouTube
API and youtube-dl tool.

• If the dataset is a sample from a larger set, what
was the sampling strategy?

We use a probabilistic sampling strategy to cover more
categories and make the dataset more balanced. More
details can be found in Section 3 Dataset in the main
paper.

• Who was involved in the data collection process and
how were they compensated? Yuchong Sun, Bei Liu,
Huan Yang, Jianlong Fu are mainly responsible for
data collection. The other authors are also involved
in discussing the data collection process.

• Over what timeframe was the data collected? This
dataset was collected from September 2021 to Octo-
ber 2021, although the YouTube are often much older
(dating back to when the platform was first created).

• Were any ethical review processes conducted ?
There is no official processes conducted, since we cre-
ate this dataset for research without human subjects.

E.4. Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the
data done? Yes. We process the ASR transcriptions
and cut the videos into clips. More details can be found
in Section 3 Dataset of the main paper.

• Was the “raw” data saved in addition to the prepro-
cessed/cleaned/labeled data (e.g., to support unan-
ticipated future uses)? Yes, but we do not plan to re-
lease the “raw” data due to copyright and privacy con-
cerns.

• Is the software that was used to prepro-
cess/clean/label the data available? Yes. We
use an off-the-shelf tool to process ASR transcrip-
tions, it can be found at here 1. The other code used
for processing the data will also be released.

E.5. Uses

• Has the dataset been used for any tasks already? If
so, please provide a description. At the time of data
release, only our paper has used it.

• Is there a repository that links to any or all papers
or systems that use the dataset? No.

• What (other) tasks could the dataset be used for?
This dataset can be used for general video-language
pre-training and the pre-trained model can be trans-
ferred to a wide range of downstream tasks, e.g., video-
text retrieval, video QA, video captioning.

• Is there anything about the composition of the
dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future
uses? Since we only release the URLs of the videos,
there might be some videos missing in the future due
to deleting by YouTube users or YouTube website.

• Are there tasks for which the dataset should not be
used? This dataset is created for research instead of
commercial usage. Tasks that are sensitive or offensive
should not use this dataset.

E.6. Distribution

• Will the dataset be distributed to third parties out-
side of the entity (e.g., company, institution, organi-
zation) on behalf of which the dataset was created?
We will release the dataset to public.

• How will the dataset will be distributed? The dataset
will be distributed in GitHub 2. We will only release

1https://github.com/ottokart/punctuator2
2https://github.com/microsoft/XPretrain/tree/

main/hd-vila-100m



the URLs of the videos and some meta-data (e.g., time
span of video clips).

• When will the dataset be distributed? The dataset
will be released by March 28, 2022.

• Will the dataset be distributed under a copyright
or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? The dataset is
under the Open Use of Data Agreement (O-UDA) 3.

• Have any third parties imposed IP-based or other
restrictions on the data associated with the in-
stances? No.

• Do any export controls or other regulatory restric-
tions apply to the dataset or to individual instances?
No.

E.7. Maintenance

• Who will be supporting/hosting/maintaining the
dataset? All the corresponding authors of this work.

• How can the owner/curator/manager of the dataset
be contacted? By emailing the contact persons in the
release page.

• Is there an erratum? No.

• Will the dataset be updated? We do not plan to up-
date it at this time.

• Will older versions of the dataset continue to be
supported/hosted/maintained? This is the first ver-
sion of this dataset.

• If others want to extend/augment/build
on/contribute to the dataset, is there a mecha-
nism for them to do so? No at this time.
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