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A. Implementation

In this section, we first give a detailed description of the
automatic global instance annotation strategy in Sec. A.1.
Then, we introduce the augmentation of training data in
Sec. A.2 and more details about the network and training
process in Sec. A.3.

A.1. Automatic global instance annotation

For each image I ∈ RH×W (H and W are the height
and width of the image), we first utilize a building detection
network based on Mask-RCNN [3] to detect all potential
building instances B = {b1, b2, ..., bn}. Candidates with
low confidence (lower than 0.9) are discarded. Next, we
build a map of the environment with an off-the-shelf SfM
library such as colmap [12]. The 3D map provides pixel-
wise correspondences for keypoints extracted from differ-
ent images, which tell us which 2D building instances are
identical in the 3D map. We then assign each identical
building instance a global ID ranging from 1 (0 indicates
background). Finally, for each image I , we obtain a dense
segmentation map S ∈ RH×W in which each pixel Sij con-
tains the global label l = 0, 1, ..., N − 1 of the global build-
ing instance that it belongs to (N is the number of global
instances).

All images in the Aachen dataset [11] are labeled auto-
matically, though some minor mistakes exist at the bound-
aries due to the noise of building instance detection and
structure-from-motion. However, as the quality of im-
ages in the RobotCar-Seasons (RoboCS) dataset [7] is rel-
atively low because of motion blur and over-exposure, we
can hardly detect building instances correctly with the pre-
trained network. In this case, we have to annotate global
instances manually. Fortunately, images in the RoboCS
dataset are densely sampled from videos, providing much
overlap for consecutive images. Therefore, we manually la-
bel 857 out 6954 images captured by the rear camera and
train our recognition module with them. Ground-truth of
unlabeled images are obtained from the prediction of our
trained model. We have 452 and 692 global building in-

Figure 1. Visualization ground-truth global instances. Global
instances in Aachen [11] dataset are annotated automatically while
in RoboCS [7] they are predicted the model trained on a small
subset of images in database which are manually labeled.

stances in the Aachen and RoboCS datasets, respectively.
Fig. 1 shows some samples of generated global instances

in the Aachen [11] and RoboCS [7] datasets. Since we ob-
tain these ground-truth global instances automatically, we
can see some minor mistakes at the boundaries.

A.2. Training data augmentation

In Aachen [11] and RoboCS [7] datasets, only daytime
images are available for training, which however, are not
enough to mitigate the domain gap between query (captured
at different seasons, weather and illumination conditions)
and reference images. Instead of training our model di-
rectly on the raw images, we take inspiration from [1,9] and
augment the training data by generating more samples with
style transfer techniques [6]. Some raw and stylized images
are shown in Fig. 2. Although these stylized images are
more artificial, they effectively augment the training data,
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Figure 2. Stylized images. We adopt style transformation tech-
niques [6] to generate more images for augmentation. Although
the stylized images are more artificial, they effectively augment the
training data, improving the generalization ability of our model.

improving the generalization ability of our model.

A.3. Network and training details

Network. We adopt the ResNet101 [4] pretrained on
semi-weakly supervised ImageNet [13] as our encoder.
Considering the efficiency, we set the input size for recog-
nition to 256×256. As local features require higher reso-
lution and lighter networks, the input size is 1024 × 1024
and only the first and second layers of Resnet101 are shared
with local feature module. We additionally introduce two
basic blocks [4] into the local feature network to enhance
its ability of representation.

Training details. We implement the network in Py-
torch [8]. We train the recognition module with Adam op-
timizer [5] with weight decay of 1e-5, batch size of 16, ini-
tial learning rate of 1e-4 for 120 epochs in total. Learning
rate is adjusted to 1e-5 and 1e-6 after 80 and 100 epochs.
As R2D2 [9], we train the local feature branch on the
Aachen [11] dataset. The local feature module is trained
with the same optimizer as the recognition with weight de-
cay of 1e-5, batch size of 8, initial learning rate of 1e-4 for
40 epochs in total. The learning rate is adjusted to 1e-5 after
30 epochs. For the training of global feature branch, posi-
tive and negative samples are obtained according to their
number of covisible 3D points in the map. Pairs with over
200 co-visible points are deemed as positive pairs, other-
wise negative ones. We use the same optimizer as the recog-
nition branch to train the global feature branch with batch
size of 4 for 40 epochs. Each batch consists of 16 positive
and 48 negative pairs.

B. Visualization of instance-wise feature detec-
tion

Fig. 4 illustrates of the distribution of valid 2D key-
points in the map reconstructed with R2D2 [9], Superpoint
(SPP) [2], SPP+Superglue [2,10], and our model. The track
length (number of observations of each 3D point) is visu-
alized with different colors (low to high). We also list the
number of valid keypoints and the minimum, median, and
maximum values of the track length at the top-left of each
image. For all methods, we detect 1k keypoints to recon-
struct the map. From Fig. 4, we can see that:

• Compared with SPP and SPP+Superflue, instance-
wise detection enables our model to retain more valid
keypoints in both summer ((1), (2)) and winter ((3),
(4)) and most of them are on buildings rather than trees
or other objects ((1), (2), (5)). Although the number of
keypoints decreases as the size occluded regions in-
crease ((5), (6), (7)), our model can still keep the close
number of keypoints to SPP+Superglue, which is more
than the number of SPP.

• SPP+Superglue obtains more valid keypoints than
SPP, but fails to increase the number of track length
because Superglue is able to establish correspondences
for keypoints in difficult areas including trees (Fig. 4
(3)) and dynamic objects (Fig. 4 (5)). However, since
all keypoints are detected by SPP, resulting in fewer
on robust objects, both SPP and SPP+Superglue report
the similar number of track length. While our instance-
wise detection and matching can effectively increase
the track length even under highly occluded conditions
(Fig. 4 (7)).

• R2D2 [9] detects features from image pyramids, al-
lowing cross-scale matching, so it produces sparser
keypoints with much higher track length. As R2D2
is more like a uniform detector, it also gives more fea-
tures on trees ((1), (2)) and is very sensitive to occluded
images ((6), (7)).

C. Visualization of instance-wise matching

In this section, we first give a qualitative comparison of
matches provided by R2D2 [9], SPP [2], SPP+Superglue [2,
10], and our method in Fig. 5. Then, we show more results
of global instance prediction and instance-wise matching
between the query and reference images in Aachen [11] and
RoboCS datasets [7]. Query and predicted labels (top), ref-
erence and ground-truth labels (bottom), and their matches
are shown in Fig. 6 and Fig. 7.

Qualitative comparison of matches. Fig. 5 shows the
matches of R2D2, SPP, SPP+Superglue, and our approach
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Figure 3. Failed cases. Our system fails sometimes due to no ex-
istence of buildings, recognition or local feature matching failure.

on images with a variety of season and illumination condi-
tions and different extent of viewpoint changes. For sim-
ple images (Fig. 5 (1) (5)), both R2D2 and SPP provide
many inliers. With advanced matcher, SPP+Superglue of-
fers more inliers than R2D2 and SPP, while our model
(without any advanced network for feature matching) yields
close results to SPP+Superglue. As the change of viewpoint
becomes larger (Fig. 5 (2) (3) (4)) or the illumination condi-
tion becomes worse (Fig. 5 (6) (7) (8)), all previous methods
including SPP+Superglue suffer from dramatic decrease of
inliers. However, our model still gives much more inliers
because of our instance-wise detection and matching and
the initially estimated pose for robust matching.

Instance prediction in Aachen dataset. Fig. 6 shows
more cases with heavy occlusions, huge illumination
changes, and large viewpoint variations. Due to the ro-
bustness of buildings to these challenges, our recognition
module is still able to recognize global instances correctly.
At the same time, our robust instance-wise detection and
matching can take full advantage of even a limited num-
ber of correctly predicted pixels to produce enough inliers,
boosting the robustness.

Instance prediction in RoboCS dataset. Fig. 7 shows
that compared with general objects, e.g., trees and traf-
fic lanes, buildings are much more robust to appearance
changes caused by changing seasons, weather, and illumi-
nation. Even with snow or at night time, when traffic lanes
are not recognizable due to occlusion and low illumination,
buildings are still very discriminative, making recognition-
based localization succeed. Sometimes, due to very heavy
occlusion or low illumination, our model can only recognize
a small part of the building, yet several pixels are enough
for local reference search and our robust instance-wise de-
tection and matching ensure robust results even under these
circumstances.

D. Failed cases
The global instances in our framework are defined on

building facades, so the localization performance is influ-
enced by the distribution of buildings. For scenes without
buildings, we still have to execute global search frequently
to find reference images. Besides, as many tasks, the recog-
nition accuracy will decrease under extreme illumination
changes, which also will impair the performance of both
coarse and fine localization. We visualize some examples
of failed cases due to no buildings, recognition failure, and
local feature matching failure in Fig. 3.
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Figure 4. Qualitative comparison of feature detection. We visualize valid 2D keypoints produced by R2D2 [9], SPP [2],
SPP+Superglue [2, 10], and our model. Different colors indicate the number of track length (low to high). Samples from different seasons
(summer: (1) (2), winter: (3) (4)) with different extent of occlusions ((5) (6) (7)) are visualized. The number of valid keypoints and
minimum, median, and maximum values of observations are written at the top-left of each image.
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Figure 5. Qualitative comparison of matches. We visualize the matches provided by R2D2 [9], SPP [2], SPP+Superglue [2, 10], and our
model. Query images are under a variety of seasons, illumination conditions, and viewpoint changes.



Figure 6. Instance prediction on Aachen dataset. We visualize instance-wise matching under heavy occlusions, huge illumination
changes, and large viewpoint variations. These cases show that even with the aforementioned challenges, our recognition module is still
able to recognize global instances correctly. Moreover, thanks to our robust instance-wise detection and matching, even a limited number
of correctly predicted pixels can provide enough inliers for a successful pose estimation.
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Figure 7. Instance prediction on RobotCar. We visualize the query image and predicted labels (top row), reference image and ground-
truth labels (bottom row), and their matches. Query images are from different seasons (summer, winter), weather conditions (overcast,
snow), and illuminations (day, night).
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