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1. Experimental Settings

We present the details of training and testing as follows.
Training. We train two LOGO-CAP networks with the
ImageNet pretrained HRNet-W32 and HRNet-W48 [6] as
the feature backbone respectively on the COCO-train-2017
dataset [4]. Common training specifications are used for
simplicity in experiments. The Adam optimizer [3] is used
with default coefficients β1 = 0.9 and β2 = 0.999. For
both the backbones, the total number of epochs is set to
140 and the batch size is set to 12 images per GPU card.
The same learning rate schedule is used for both models.
The learning rate is initially set to 0.001 and then decayed
to 10−4 and 10−5 at the 90-th and 120-th epoch respec-
tively. We use 4 and 8 V100 GPUs to accelerate the train-
ing for the two LOGO-CAP models with HRNet-W32 and
HRNet-W48 respectively. The resolution of training images
is 512×512 and 640×640 for the two models respectively.
Following the widely adopted experimental settings in [7],
the data augmentations in training include (1) random rota-
tion with the rotation degree from −30◦ to 30◦, (2) random
scaling with the factor in the range of [0.75, 1.5], (3) ran-
dom translation in the range [−40pix, 40pix] along both x
and y directions, and (4) random horizontal flipping with
the probability of 0.5.

Similarly, for different hyperparamters such as the trade-
off parameter λ in the total loss, we did not run compu-
tationally expensive hyperparameter optimization for sim-
plicity.
Testing. We focus on the single-scale testing protocol in
the COCO keypoint benchmark for the sake of efficient hu-
man pose estimation. In the testing phase, the short side
of input images is resized to a specific length (e.g., 384,
512, or 640 pixels) and keep unchanged the aspect ratio be-
tween the height and the width. As commonly adopted in
many bottom-up pose estimation approaches (e.g., AE [5],
HrHRNet [1], DEKR [2]), the flip testing is used as our
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Table 1. The performance of a vanilla center-offset regression ap-
proach, its empirical upper bound, and the performance of our pro-
posed LOGO-CAP using HRNet-W32 [6] as the feature backbone.
See text for detail.

Baseline Emp. Bound LOGO-CAP

AP 60.1 88.9 70.0
AP50 85.2 93.1 88.2
AP75 66.7 90.6 76.4
APM 53.7 87.7 64.4
APL 71.5 90.2 78.4

default setting for the fair comparison. In the implementa-
tion, we feed the stacked tensor with an input image and a
horizontally-flipped one together to get the global heatmaps
and the offset fields. The flipped outputs are then averaged
(according to the flip index) to get the final global heatmaps
and the offset fields. For the computation of local heatmaps
and the local-global adaptation, only the non-flipped out-
puts are used for the final predictions.

2. The Empirical Upper Bound

We elaborate on the details of computing the empiri-
cal upper bound of performance for a vanilla center-offset
pose estimation method. The detailed results are reported
in Tab. 1.
Network Architecture. The vanilla center-offset regres-
sion baseline uses the ImageNet pretrained HRNet-W32 [6]
as the backbone, and the same modules as in our LOGO-
CAP+HRNet-W32 for the center heatmap regression and
the offset vector regression. We present the details of com-
puting keypoint expansion maps (KEMs) that are used in
calculating the empirical uppper bound as follows.
Computation of Keypoint Expansion Maps. Denoted
by P ∈ RN×17×2 the initial pose parameters (i.e., the 2-
D locations for the 17 keypoints of the N pose instances)
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estimated by the vanilla center-offset method, we expand
each of the estimated keypoints with a local 11 × 11 mesh
grid, that is to lift a keypoint to a 2-D mesh to counter
the estimation uncertainty. We use the COCO benchmark
provided keypoint sigmas to scale the unit length of the
meshgrid for different types (e.g., nose, eyes, hips) of key-
points. After getting the expanded keypoint meshes M
of the initial poses, we compute their keypoint similarities
S ∈ RN×11×11×K×17 between the groundtruth keypoints
G ∈ RK×17×3 and the keypoint expansion maps. By ap-
plying the sum reduction on the similarity tensor S along
the 2-nd, 3-rd and the last axes, we have known the op-
timal correspondence (including the low-quality matches)
for each center anchor, denoted by SN×11×11×17. Then,
the pose with the maximal similarity in the 11 × 11 local
window for each center anchor are used as the best one to
compute the empirical upper bound on the fully-annotated
COCO-val-2017 dataset.

3. Multi-Scale Testing Results
We report the multi-scale testing results following the

protocol used in DEKR, as well as the number of parame-
ters and the GFLOPs in Tab. 2. Overall, the multi-scale test-
ing scheme improves the results on the COCO benchmark.
For the OCHuman dataset, it is shown that the multi-scale
testing scheme downgrades the performance for both our
W48 model and the two DEKR models. It should be noted
that the multi-scale testing for bottom-up approaches will
lead to a very slow inference speed (even slower than the
top-down approaches) for both DEKR and our method. Al-
though the AP scores can be improved on COCO, it is out of
the pursuit of better speed-accuracy trade-off for bottom-up
paradigms.

Table 2. The results of the single-scale (s.s.) and multi-scale (m.s.)
testing, the number of parameters and GFLOPs.

COCO-val-2017 COCO-testdev-2017 OCHuman-val OCHuman-test
AP (s.s.) AP (m.s.) AP (s.s.) AP (m.s.) AP (s.s.) AP (m.s.) AP (s.s.) AP (m.s.)

Ours (W32) 69.6 71.3 68.2 69.9 39.0 40.6 38.1 39.9
Ours (W48) 72.2 73.2 70.8 71.9 41.2 40.9 40.4 40.1

DEKR (W32) 68.0 70.7 67.3 69.8 37.9 36.6 36.5 36.2
DEKR (W48) 71.0 72.3 70.0 71.0 38.8 37.0 38.2 36.3

4. More Qualitative Results
Fig. 1 shows some qualitative examples of human pose

estimation by the proposed LOGO-CAP on the COCO-val-
2017 dataset. For each image in Fig. 1, we select a per-
son instance to show the OKS difference between the initial
pose and the refined pose in a close-up visualization when
matching to the ground truth poses.
Results on the COCO-val-2017 and the OCHuman
Datasets. Fig. 2 shows examples of pose estimation in the
two datasets by the proposed LOGO-CAP with the HRNet-
W32 backbone. Our proposed LOCO-CAP is able to handle

large structural and appearance variations in human pose es-
timation.
Fast pose estimation for video frames. To justify the po-
tential of our proposed approach in practical applications,
we run our LOGO-CAP (W32 model) on two videos that
have the resolution of 1280 × 720 from YouTube. We fol-
low our testing protocol to resize the short side of the video
frames to 512 pixels and keep their original aspect ratios
for inference. Without using any pose tracking techniques,
our LOGO-CAP achieves fast and accurate human pose es-
timation. Please click the following anonymous links for
the demo videos (with background musics):

- https : / / bit . ly / 3cFcJ75 (video credit:
https://youtu.be/2DiQUX11YaY)

- https : / / bit . ly / 30RkyEg (video credit:
https://youtu.be/kTvzU1sGSyA)

In these two demo videos, the instantaneous FPS for each
video frame is marked in the left corner of the video.
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Figure 1. Examples of human pose estimation in the COCO val-2017 dataset by the proposed LOGO-CAP with the HRNet-W32 backbone.
Top: The COCO skeleton template based visualization. Bottom: The close-up visualization and OKS comparisons between the initial
center-offset estimation and the refined keypoints.

Figure 2. Qualitative results of our LOGO-CAP (HRNet-W32). All images were picked thematically without considering our algorithms
performance. The first two rows display our approach on the COCO-val-2017 dataset and the last two ones show our results on the
OCHuman test dataset.


