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1. Implementation Details

We give more implementation details of our experiments
in this section.

1.1. Datasets

We give the summary statistics of all involved datasets in
Table 1, including six small datasets: CUB [16], Stanford
Cars [7], FGVC-Aircraft [10], CIFAR-100 [8], Sketches [4]
and WikiArt [13], and two large-scale datasets: ImageNet [3]
and Plcaces365 [20].

Task Train Validation Classes

CUB 5994 5794 200
Cars 8144 8041 196
FGVC 6667 3333 100
WikiArt 42129 10628 195
Sketches 16000 4000 250
CIFAR-100 50000 10000 100
Places365 1803460 36500 365
ImageNet 1281144 50000 1000

Table 1. Detailed statistics of adopted eight datasets.

1.2. Training Settings

We follow most of the training strategies used in
DeiT [15] and implement the proposed method based on
its official code 1 with PyTorch [12] on two Nvidia Tesla
A100 GPUs.

For data augmentation, extensive tricks are put to use,
such as mixup [19], cutmix [18], Rand-Augment [2], re-
peated augmentation [1, 5], and random cropping. All input
images are resized to 224× 224 pixels to ensure consistency
with images of ImageNet. The official pre-trained weights

†Corresponding author
1https://github.com/facebookresearch/deit

of the ImageNet task are adopted as the well-initialization
weights of the old task.

1 CUB Cars FGVC WikiArt Sketches CIFAR
2 Cars CIFAR CUB Sketches WikiArt FGVC
3 FGVC Cars Sketches CIFAR WikiArt CUB
4 WikiArt CIFAR Sketches CUB FGVC Cars
5 Sketches CUB FGVC Cars CIFAR WikiArt
6 FGVC Cars WikiArt CIFAR CUB Sketches

Table 2. Six task sequences. “CIFAR” represents CIFAR-100
dataset for simplicity.

For training, all models are trained for 30 epochs (5
warm-up epochs) on two GPUs with a batch size of 256.
AdamW [9] is employed as the optimizer using cosine linear-
rate scheduler with a weight decay of 5e−2. The initial
learning rates of backbones (including new classifiers and
added linear layers in Adaptor-Bert [6], ) and MEAT masks
are batchsize

1024 × 5e−4 and batchsize
1024 × 0.1. The learning rate

of the masks introduced Piggyback [11] is batchsize
1024 × 5e−4,

following the same learning rate used in Piggyback. Mean
accuracy is taken over six random task orders using five
seeds, which are 226, 580, 1028, 2685, and 3486 respec-
tively. The detail task sequences is listed in Table 2.

1.3. Baseline Parameters

Table 1 in the main text presents our main implementation
results, and we give the descriptions of hyperparameters in
baselines. Classifier and Finetuning baselines don’t intro-
duce any extra parameters. The former trains new classifiers
only, and the latter retrains whole models. For other methods,
the hyperparameters in both our method and competitors are
set by grid search. For LwF baseline, the coefficient mul-
tiplied with the classification loss of the new task is 1; the
coefficient multiplied with each distillation loss is 2. For
Piggyback [11], the real-value mask is initialized with value
0.01, and the default threshold of the binazier is 5e−3. Spe-
cially, for HAT [14], the gated task embeddings are multi-
plied with token embeddings after the FFN block at each
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New ImageNet Places365 RandomTask
DeiT-Ti DeiT-S T2T-ViT-12 DeiT-Ti DeiT-S T2T-ViT-12 DeiT-Ti DeiT-S T2T-ViT-12

CUB 71.16 81.53 69.90 65.37 71.33 50.99 46.05 49.10 26.15
Cars 53.42 77.20 61.90 48.64 63.78 53.98 16.27 18.29 11.52

FGVC 52.69 65.69 53.55 46.79 60.43 44.23 14.35 15.51 12.46
WikiArt 64.63 73.43 61.20 60.7 69.42 58.64 43.85 35.57 32.54
Sketches 70.73 76.68 74.75 60.11 67.99 68.64 39.80 18.79 45.24

CIFAR-100 78.13 85.93 77.42 73.19 80.03 71.76 66.05 72.71 33.10

Table 3. Accuracy (%) on new tasks added on different old tasks as initializations. “ImageNet” and “CUB” are well-trained weights on the
ImageNet dataset and the CUB dataset tasks served as initializations, separately. And “Random” denotes that three vision transformers are
randomly initialized.

encoder layer. It is important to note that HAT has to store
task-specific embeddings. For the initial ImageNet task, we
don’t train ViTs on ImageNet and directly utilize the official
open-source pre-trained weights. As a result, the experi-
ments of HAT lack the embeddings of ImageNet. Given
this circumstance, the performance on ImageNet of HAT has
been omitted. In Table 1 in the main text, we use “N/A” to
denote that the performance on the ImageNet dataset of the
HAT baseline is omitted.

2. Additional Abaltion Experiments
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Figure 1. Sensitivity analysis on CIFAR-100 with ViT-Ti.

Sensitivity analysis of hyperparameters in MEAT. We
use grid search for tuning all hyperparameters. Here we
show the results of used hyperparameter optimization with
grid search in Fig. 1. It can be seen that the results of MEAT
are less sensitive to α and λ and are more vulnerable to γ.

Individual Classifier LwF Piggyback HAT BERT-adaptor MEAT

Std 1.37 1.28 1.47 1.29 1.26 1.31 1.23

Table 4. Standard deviation on CIFAR-100 with ViT-Ti.

Uncertainty. Standard deviation is provided as an indicator
of uncertainty averaged over all runs in Table 4. It can be
concluded the proposed MEAT shows low standard devia-
tion on the CIFAR-100 dataset compared to other baseline

Model # CUB CIFAR100 γ CUB CIFAR100

DeiT-Ti
3 68.31 76.99 2 70.33 77.89
5 69.90 77.16 4 71.16 78.13
12 71.16 78.13 6 68.39 75.34

DeiT-S
3 80.94 84.77 2 79.54 83.46
5 81.29 84.80 4 81.53 85.93
12 81.53 85.93 6 80.21 83.90

Table 5. Accuracy (%) of different numbers (#) of transformer
layers applied with the MEAT masks and different initial values γ
of ti on the CUB dataset and the CIFAR-100 dataset.

methods.
Different Initialization. In our main experiments, we adopt
a well-initialization transformer-based model to provide the
knowledge of the old task, specifically the ImageNet task.
In this subsection, we want to investigate the influence of
different initialization via the weights of different old tasks.
As shown in Table 3, ImageNet, Places365, and Random are
three types of model initializations for DeiT-Ti [15], DeiT-
S [15], and T2T-ViT-12 [17]. In other words, they are three
old initial tasks. It can be observed that ImageNet enjoys the
most superior performance on new tasks compared to the
other two old tasks. And Places365 performs worse than the
ImageNet initialization, as the images in the Places365 show
large domain shifts from the target small tasks. Moreover,
both ImageNet and Places365 achieve much better perfor-
mance than Random. These observations verify that a good
initialization can boost the performance of MEAT by a large
margin cause its weights are trained on diverse image data
like ImageNet and Places365. Meanwhile, the old task with
a closer domain to target tasks, like ImageNet, tends to serve
a good initial task. Results on Random indicate that appro-
priate pro initialization is significant for vision transformers
in MEAT.
Influence of Hyperparameters. In this subsection, we pro-
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vide a qualitative analysis of different choices on hyperpa-
rameters used in our method. Table 5 first analyses per-
formance when adding the MEAT masks on tokens and
neurons in different encoder layers on the CUB dataset and
the CIFAR-100 dataset, and we find that the more masks
are inserted, the better the results. When all encoder layers
are added with the attention masks (12 layers), the model
shows the best performance of learning two new tasks. The
influence of different initial values γ, which is the initial
weights of ti of the masks, is also investigated. As shown in
Table 5, it can be observed in Table 5 that both too-large and
too-small initial values lead to performance deterioration.
Consequently, a medium value is appropriate for our pro-
posed MEAT masks. For clarity, the specific locations (trans-
former layers) added with MEAT masks in Table 5 are listed
as: (a) 3: layer-4, layer-7, layer-10; (b) 5: layer-2, layer-4,
layer-6, layer-8, layer-10; (c) 12: layer-1, layer-2, layer-3,
layer-4, layer-5, layer-6, layer-7, layer-8, layer-9, layer-10,
layer-11, layer-12.

3. Additional Analysis and Discussion
We visualize the trained binary masks on tokens of each

encoder layer in DeiT-Ti, DeiT-S, T2T-ViT-12, as shown in
Figure 2, Figure 3, and Figure 4, separately. In each figure,
the example images in each row are from CUB, Car, FGVC,
WikiArt, Sketches, CIFAR-100. The results keep the same
as Section 4.4 in the main text. It can be observed that all
three transformers tend to isolate many image tokens at the
first layer. Then at the shallow layers they activate most of
the image tokens at the shallow layers. With the deepening
of layers, more tokens are isolated and the models put more
attention on the regions where the targets are more likely to
appear, for example, the central patches are activated with a
higher probability at deep layers. It also can be verified that
the bigger model, DeiT-S has a tendency to activate more
tokens at shallow layers than the other two smaller models.
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Figure 2. Visualization of the trained MEAT masks (on neurons) on the example images of six datasets at each encoder layer in DeiT-Ti.
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Figure 3. Visualization of the trained MEAT masks (on neurons) on the example images of six datasets at each encoder layer in DeiT-S.
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Figure 4. Visualization of the trained MEAT masks (on neurons) on the example images of six datasets at each encoder layer in T2T-ViT-12.
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