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A. Training Details

Object Detection on MS-COCO 2017. For Swin Trans-
former, we employ the setting used in [23]. For ResNet50-
based models, we train Mask-RCNN using the default
model and hyperparameter configurations from mmdetec-
tion 3, except for the learning rate of SGD, which we set to
0.04 based on the grid-search over 0.01, 0.04, and 0.08. We
replace random initialization with pretrained weights from
DeepAug+AugMix, ANT, or adversarially-trained models.

Semantic Segmentation on ADE20K. For Swin Trans-
former, we employ the setting used in [23]. For ResNet-50-
based models, we train UperNet using the default model and
hyperparameter configurations from mmsegmentation 4, ex-
cept for the backbone type, which we set to ResNet50. We
replace random initialization with pretrained weights from
DeepAug+AugMix and ANT.

Image Classification on CIFAR10. We train all models
using the same configuration. Following the recommenda-
tions made by [30], we use batch size of 64, momentum
of 0.9, weight decay of 5e-4 and the learning rate of 0.01,
which we reduce by a factor of 10 every 50 epochs.

B. Additional Experiments
B.1. Degree of fine-tuning

In this section, we study how the degree of fine-tuning af-
fects the performance of robust transfer for the full-network
transfer learning, where we use pretrained, robustified Im-
ageNet weights as our initialization. It is reasonable to ex-
pect that when we use a small learning rate for fine-tuning,
we should be able to retain some of the robustness prop-
erties that the robustified ImageNet models have. On the
other hand, small learning rates slow down training pro-
cesses and can fail to reach convergence under limited com-

3https : / / github . com / open - mmlab / mmdetection /
blob / master / configs / _base _ /models / mask _ rcnn _
r50 _ fpn . py, https : / / github . com / open - mmlab /
mmdetection/blob/master/configs/_base_/datasets/
coco_instance.py

4https://github.com/open-mmlab/mmsegmentation/
blob / master / configs / upernet / upernet _ r50 _
512x512_80k_ade20k.py, https://github.com/open-
mmlab/mmsegmentation/blob/master/configs/_base_
/models/upernet_r50.py, https://github.com/open-
mmlab/mmsegmentation/blob/master/configs/_base_
/datasets / ade20k . py, https : / / github . com / open -
mmlab/mmsegmentation/blob/master/configs/_base_
/schedules/schedule_80k.py

putational resources. To investigate this trade-off, we train
PRIME-pretrained ImageNet models with varying learning
rates under the same computational budget. The results are
shown in Fig. 5. As expected, the smaller the learning rate,
the lower the clean performance becomes, and consequently
the raw performance on the corrupted data also decreases at
least for the COCO object detection task. However, the per-
centage of the performance drop becomes less significant
for the small learning rate cases. This partially confirms
our intuition. We leave as future work maintaining robust-
ness while improving performance on downstream tasks for
transfer learning.

B.2. Data augmentation during fine-tuning

While we focus on studying how much robustness trans-
fer learning can retrain from robust pretrained ImageNet
models to downstream tasks, it is also reasonable to simply
use robustification techniques during transfer learning since
our ultimate goal is to have a robust model on downstream
tasks. We use PRIME [26] as a data augmentation technique
that is intended to robustify image classification models. We
chose this method because it does not require to modify the
loss function unlike ANT and AugMix, and is much sim-
pler than DeepAug. The results are shown in Fig. 6. We use
three ImageNet pretrained weights to initialize ResNet50,
where Regular is a standard ImageNet pretrained weights,
and DeepAug+ and PRIME indicate that the corresponding
ImageNet training incorporates either DeepAug+ or PRIME
data augmentation. Swin-T is pretrained on ImageNet, but
without any robustification technique during pre-training.
For transfer learning from Swin-T, we use PRIME.

In Table 4 and 5, we compare the effect of the PRIME
data augmentation during transfer learning. While applying
PRIME during transfer learning mitigates the performance
drop from the clean data to corrupted data, we can also see
that it significantly hurts the clean performance on COCO.
Interestingly, for ADE20K semantic segmentation, apply-
ing PRIME during fine-tuning slightly improves the clean
performance.

In Figure 6, we compare the effect of the PRIME data
augmentation during transfer learning across models. Here
again we can observe that PRIME hurts the clean perfor-
mance for COCO but does not significantly affect ADE20K.
Even in the PRIME fine-tuning setting, we can see that
Swin-T performs the best among the models we evaluated.

We note that for PRIME during transfer learning, we
omit the geometric transformation module from PRIME so
that the PRIME data augmentation does not distort geomet-
ric information that is tied with object bounding boxes and
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Figure 5. The effect of the degree of fine-tuning robust ImageNet backbones for downstream tasks. We use the data augmentation technique
called PRIME , which corrupts images during fine-tuning. We measure the degree of fine-tuning by the value of the learning rate we use for
fine-tuning. We evaluate three different settings with varying learning rates. We can see that for both ADE20K semantic segmentation and
COCO object detection, the smaller the learning rate is, the lower the clean performance becomes. However, the percentage of performance
drop becomes less significant for the small learning rate, which confirms our intuition that small learning rates better retain the robustness
property of the original ImageNet backbones.

COCO PRIME PR-PRIME

Box AP clean 36.42 31.47
Box AP corrupted 28.30 24.80
BoX AP Drop 22.29 % 21.21 %

Table 4. The effect of PRIME data augmentation during transfer
learning from ImageNet models to COCO object detection. Both
PRIME and PR-PRIME are initialized with weights that are pre-
trained using PRIME on ImageNet. For PRIME, we use a stan-
dard training for transfer learning. For PR-PRIME, we apply the
PRIME data augmentation during transfer learning.

semantic labels in ADE20K and COCO. Furthermore, we
use the default hyperparameters of PRIME that are designed
for ImageNet, and did not incorporate the JSD consistency
loss in the PRIME module. More careful tuning of PRIME
and incorporation of the JSD consistency loss into object
detection / semantic segmentation systems might lead to
better robust transfer results, but we leave this as future
work.
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ADE20K PRIME PR-PRIME

IoU clean 40.64 40.91
IoU corrupted 28.56 30.56
IoU Drop 29.73 % 25.31 %

Table 5. The effect of PRIME data augmentation during transfer
learning from ImageNet models to ADE20K semantic segmenta-
tion. Both PRIME and PR-PRIME are initialized with weights that
are pretrained using PRIME on ImageNet. For PRIME, we use a
standard training for transfer learning. For PR-PRIME, we apply
the PRIME data augmentation during transfer learning.
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Figure 6. The effect of data augmentation during transfer learning from ImageNet pretrained weights to downstream tasks. The ‘PR’ stands
for PRIME, the robustification data augmentation technique we used during fine-tuning. We compare three ImageNet-pretrained ResNet50
models (Regular, DeepAug+, and PRIME) with Swin-T, which is pretrained on ImageNet and also use PRIME during transfer learning.
During ImageNet training, DeepAug+ and PRIME use the DeepAug+AugMix and PRIME data augmentation, respectively. Interestingly,
it seems that the PRIME fine-tuning does not affect the clean performance on the semantic segmentation task (ADE20K), although it hurts
the clean performance on the COCO object detection. (See Figure 2 for comparison.) Regarding the difference in architecture, we can see
that Swin-T still performs the best in terms of both raw performance metrics on clean/corrupted data and the percentage of the performance
drop.


