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In the supplemental material, we provide additional de-
tails about the TOPO-DataGen workflow, the proposed
benchmark datasets, and the experiments carried out in the
main paper. Specifically, we discuss the following topics:

1. The error analysis of our benchmark datasets and the
overall potential societal impact.

2. The implementation details of the proposed CrossLoc
and the adapted DDLoc baseline.

3. Additional qualitative comparisons and discussion on
the failure cases and limitations.

All the source code, the proposed benchmark datasets and
the pre-trained model weights are available at crossloc.
github.io .

1. Benchmark datasets error analysis
We validate the accuracy of the multimodal synthetic

data generated through our TOPO-DataGen and the geo-
tag quality of the real images captured by our drone [1]
equipped with the real-time kinematics (RTK) level of
Global Navigation Satellite System (GNSS) positioning.

1.1. Synthetic data quality control

Geo-referenced 3D scene model precision. For the whole
benchmark datasets, the digital surface models (DTM) [5]
and the LiDAR point clouds [4] used for rendering were
acquired with planimetric precision of ± 20 cm and alti-
metric precision of ± 10 cm. We employ the orthophoto
assets with a position accuracy of ± 15 cm and a resolution
of 10 cm [3] to colorize the DTM and point clouds. The
± sign denotes the standard deviation w.r.t. the local co-
ordinate reference systems [2]. In the pre-processing step,
we convert the open geodata into the global WGS84 coor-
dinate reference system, and the loss of accuracy therein is
negligible. Please see our source code for more details.
Scene coordinate ray tracing accuracy. The ray-traced
scene coordinate label accuracy is further evaluated by ver-
ifying the camera pose computation. Table 1 demonstrates
how well the generated coordinate maps correspond to the
ground truth virtual camera viewpoints. The mean cam-
era pose computation errors for the Urbanscape and Na-

Urbanscape Naturescape
transl. rot. transl. rot.

Mean 0.11m 0.06° 0.23m 0.06°
Std. 0.06m 0.03° 0.09m 0.03°

Median 0.10m 0.06° 0.22m 0.06°

Table 1: Indirect quality estimation of the scene coordi-
nate labels. We feed the generated coordinate maps into the
DSAC* [8] PnP solver and compute the poses error w.r.t.
the ground truth camera viewpoints.

Urbanscape Naturescape

Mean 1.19px 1.04px
Std. 0.16px 0.11px

Median 1.14px 1.03px
90% 1.44px 1.08px
95% 1.52px 1.09px
99% 1.68px 1.14px

Table 2: Absolute reprojection error of the scene coordi-
nate labels. Following [12], we report the reprojection error
in the image plane in pixels and particularly show the per-
centile errors to indicate the long tail distribution.

turescape datasets are 0.11m, 0.06°, and 0.23m, 0.06°, re-
spectively. We use the eight-times-downsampled scene co-
ordinates in this evaluation, the same dataset used in the
main paper’s experiments.

Table 2 reports the reprojection error of the scene coordi-
nates w.r.t. to the ground-truth camera viewpoints as in [12].
The proposed benchmark datasets have consistently low er-
ror at the magnitude of one or two pixels in both scenes. The
percentile errors are close to the mean or median errors and
indicate that there are few occurrences far away from the
central distribution. The full-size coordinate maps (without
downsampling) are used in the reprojection error analysis.
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(a) Urbanscape RTK precision: position error. (b) Naturescape RTK precision. Left. Position error. Right. Orientation error.

Figure 1: Accuracy evaluation of the real data RTK geo-tag. We show the camera pose refinement error obtained by solving
the photogrammetry bundle adjustment via GCP alignment. The RTK precision in the Urbanscape dataset is at cm level,
while it degrades to over 2 meters in the Naturescape dataset because of weak GNSS signals.

1.2. Real data quality control

To collect high-accuracy aerial photos, a DJI Phantom
4 RTK drone [1] was used, whose RTK positioning en-
ables a cm-level accuracy for the image geo-tags. A net-
work of ground control points (GCP) was measured with a
JAVAD Triumph-LS [6] base with mm-level accuracy. We
use 13 and 6 GCPs, respectively, for the Urbanscape and the
Naturescape datasets to solve the bundle adjustment pho-
togrammetric alignment and compare with the RTK geo-
tags extracted from the photo metadata. Figure 1 shows
the RTK geo-tag error statistics w.r.t. the computed pho-
togrammetry ground truth. The geo-tag precision at the Ur-
banscape dataset is as small as 4 cm, while it degrades sig-
nificantly in the Naturescape dataset.One can observe that
there is a mean positional error bias. In the next steps, this
bias was subtracted for all images of each drone, bringing
the error to a lower level (mean error = 0.42 m).

2. Potential societal impact
TOPO-DataGen and benchmark datasets. The proposed
TOPO-DataGen is a multi-purpose task-agnostic synthetic
data generation tool that entails little ethical concerns. Es-
sentially, it needs real-world geo-data to perform data ren-
dering, most of which is provided by national agencies [9].
The incoming researchers adopting our method are advised
to pay attention to the privacy or transparency of the under-
lying geo-data before implementation. In our benchmark
datasets, the open-source swisstopo [3, 4, 5] geo-data is em-
ployed for synthetic data generation, and the real data is col-
lected using a drone. The produced images and associated
labels have airborne perspectives, distinct from those in in-
door or urban street scenes. There is no human object data
or personally identifiable information in our datasets.
CrossLoc localization. Our CrossLoc is a scene coordinate
regression-based localization method and does not impose

particular requirements infringing privacy. It learns to lo-
calize the image primarily based on the distinct geometries
in the environment, such as mountains or buildings. It does
not require human data and is unlikely to benefit from any.

3. Implementation details
3.1. CrossLoc architecture

Network architecture. Following [8], we adopt a fully
convolutional network with ResNet-style skip layers [11]
to employ the diverse data augmentation, including rescal-
ing and rotation. Table 4 shows the CrossLoc encoder-
decoder network and the projection head for representa-
tions concatenation. We apply group normalization [20] and
relu nonlinear activation function for each convolutional
or residual layer. The parameter N in Table 4b is task de-
pendent, e.g., for coordinate regression N = 4 because of
3-dimensional coordinate prediction and 1-dimensional un-
certainty estimation. The parameter T in Table 4c refers to
the number of visual representations; for the vanilla Cross-
Loc, T = 3, and for the CrossLoc-SE using external se-
mantics, T = 4. The sign + and

⊕
respectively stand

for addition and channel-wise concatenation operators. As
in [8], we use consecutive three convolutional layers with
strides of two to downsample the prediction eight times. For
the semantic segmentation task, we keep the full-size labels
and apply the dense upsampling convolution [19] in the fi-
nal output layer to recover the full-size semantic prediction.
Training hyper-parameters. In the first step of Cross-
Loc training, we pretrain the sub-task networks with task-
agnostic LHS-sim synthetic data, and fine-tune the models
with pairwise real-sim data. Table 3 shows the specific
training hyper-parameters. The learning rate is halved at
50 and 100 epochs at most twice. We extend the encoder
fine-tuning epochs particularly on the out-of-place scene in
both datasets to ensure convergence. Notably, the semantic



Urbanscape Naturescape

Task Encoder pretraining Encoder finetuning Encoder finetuning Encoder pretraining Encoder finetuning Encoder finetuning
with in-place data with out-of-place data with in-place data with out-of-place data

Epoch Initial LR Epoch Initial LR Epoch Initial LR Epoch Initial LR Epoch Initial LR Epoch Initial LR

Coordinate 150 0.0002 150 0.0002 1500 0.0002 100 0.0002 150 0.0002 2000 0.0002
Depth 150 0.0002 150 0.0002 300 0.0002 100 0.0002 150 0.0002 2000 0.0002

Surface normal 150 0.0002 150 0.0002 300 0.0002 100 0.0002 150 0.0002 2000 0.0002
Semantics 30 0.0002 30 0.0002 30 0.0002 30 0.0002 30 0.0002 30 0.0002

Table 3: CrossLoc encoder-decoder initialization training hyper-parameters.

segmentation tasks reach convergence much faster than the
other regression tasks. Subsequently, during coordinate net-
work fine-tuning using the frozen non-coordinate encoders
as feature extractors, we train each model for 1000 epochs
with a fixed learning rate of 0.0001. In line with [17, 21],
we find that reusing fixed modules instead of training from
scratch simultaneously improves training convergence. The
Adam optimizer [13] is used throughout our training.

3.2. DDLoc architecture

ARC structure. DDLoc is our adaption of the attend-
remove-complete (ARC) framework [21], which is a state-
of-the-art domain transformation method. The original
ARC architecture contains a style translator mapping im-
ages between real-world and synthetic domains. It fur-
ther trains an attention module to detect challenging regions
and an inpainting module to complete the masked regions
with realistic fill-in. A depth predictor module then takes
the translated result as input to make the prediction. The
ARC method has been verified by extensive experiments
that it can leverage synthetic data for accurate depth esti-
mations [21].
Network architecture. In our implementation of DDLoc,
the depth predictor is replaced with a coordinate regres-
sor, which is implemented by an encoder-decoder architec-
ture [23] with skip connections [22]. Based on that, the
scene coordinate prediction is further down-sampled by the
factor of 8 to enhance efficiency as well as to increase the
receptive field [8]. The down-sampling is implemented by
fully convolution layers with stride of 2. Any other single
module in DDLoc uses the same encoder-decoder architec-
ture as used in [23]. The decoder of the attention module is
modified to output a single channel to discover challenging
regions from real-world input images.
Training hyper-parameters. Following ARC’s training
method [21], we first pretrain each module individually us-
ing the Adam optimizer [13] with an initial learning rate of
1e-4 and coefficients of 0.9 and 0.999. For training the coor-
dinate regressor, we adapt the original depth loss for the co-
ordinate regression distance, and employ re-projection loss
as in DSAC* [8]. The sparsity level ρ is chosen as 0.9 when
training the attention module on the Urbanscape and the Na-

turescape datasets. Other modules are trained with the same
loss as that in the original ARC implementation. Lastly, we
fine-tune the whole framework with the loss of the coordi-
nate predictor pretraining and the same training parameters.

4. Additional qualitative results and analysis

In this section, we visualize additional comparisons of
the scene coordinate regression errors in Figure 2 and com-
pare the predicted point clouds of several urban and nat-
ural scenarios in Figure 3. We show examples where our
CrossLoc outputs accurate coordinate prediction and fail-
ure cases where it makes much worse estimation. Even-
tually, we summarize the technical limitations of our pro-
posed methods.
Failure cases. Generally, CrossLoc and its variants out-
perform the others by a clear margin. Nevertheless, there
are two exceptional cases where the CrossLoc family can-
not make a good prediction. First, novel objects, such as
construction cranes, are challenging to the CrossLoc. We
conjecture that CrossLoc learns the geometric information
of the buildings as a whole. Thus, the appearance of novel
objects makes the scene less recognizable for CrossLoc and
leads to exacerbated predictions. Second, CrossLoc is less
robust to the change of illumination conditions. The error of
CrossLoc prediction increases significantly in light regions
and dark shadows in the Naturescape dataset. On the con-
trary, DDLoc predicts the coordinates in these regions more
accurately thanks to the translator and attention module.
Point cloud visualization. As can be observed in Figure 3,
CrossLoc gives a complete reconstruction of buildings in
the Urbanscape dataset with the fewest outliers. The pre-
dicted point clouds in the Naturescape dataset are generally
noisier, which is in line with the quantitative results in the
paper. However, one can still observe that the points pre-
dicted by our CrossLoc are less deviated from their actual
positions than the other two baselines.
Technical limitations. Firstly, the proposed TOPO-
DataGen toolkit requires sufficiently-accurate geo-data for
training data generation. Although there are more and more
sources of open geo-data nowadays from the national agen-
cies [9], it is not likely that they are easily accessible in
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Figure 2: Additional qualitative comparison of the scene coordinate error map including improvement and failure cases. We
use the same color bar for visualizing coordinate regression error in each row with the unit in meter.



DDLocDSAC* CrossLocGround truth

Figure 3: Comparison of point clouds predicted by different coordinate regression approaches. Our CrossLoc method gener-
ates a more complete and robust reconstruction of the buildings than the other two baselines.

any location. The data assets are critical for applying our
proposed TOPO-DataGen, which is similar to many other
data-driven practices.

Besides, the CrossLoc relies on CNN-extracted visual
representations, and like many peer methods [8, 15], it
could be specific to the local environment or texture. It is
prone to failure for significant outliers or samples unfore-
seen during the training stage. The scalability of the pro-
posed CrossLoc may also be limited by the capacity of the
CNN backbone network, but it could be addressed by the
ensemble regressor learning [7] or using more expressive
backbone such as the transformers [10, 14, 18, 16].



Layer Channel I/O Kernel/Str./Pad. Input

conv1 3/32 3/1/1 image
conv2 32/64 3/2/1 conv1
conv3 64/128 3/2/1 conv2
conv4 128/256 3/2/1 conv3

res1 conv1 256/256 3/1/1 conv4
res1 conv2 256/256 1/1/0 res1 conv1
res1 conv3 256/256 3/1/1 res1 conv2

res2 add -/- -/-/- relu(res1 conv3+conv4)
res2 conv1 256/512 3/1/1 res2 add
res2 conv2 512/512 1/1/0 res2 conv1
res2 conv3 512/512 3/1/1 res2 conv2
res2 conv s 256/512 1/1/0 res2 add

res3 add -/- -/-/- relu(res2 conv3+res2 conv s)
res3 conv1 512/512 3/1/1 res3 add
res3 conv2 512/512 1/1/0 res3 conv1
res3 conv3 512/512 3/1/1 res3 conv2

res4 add -/- -/-/- relu(res3 conv3+res3 add)
res4 conv1 512/512 3/1/1 res4 add
res4 conv2 512/512 1/1/0 res4 conv1
res4 conv3 512/512 3/1/1 res4 conv2

feat enc -/- -/-/- relu(res4 conv3+res4 add)

(a) Encoder architecture.

Layer Channel I/O Kernel/Str./Pad. Input

res1 conv1 512/512 3/1/1 feat dec
res1 conv2 512/512 1/1/0 res1 conv1
res1 conv3 512/512 3/1/1 res1 conv2

res2 add -/- -/-/- relu(res1 conv3+feat dec)
res2 conv1 512/512 3/1/1 res2 add
res2 conv2 512/512 1/1/0 res2 conv1
res2 conv3 512/512 3/1/1 res2 conv2

res3 add -/- -/-/- relu(res2 conv3+res2 add)
res3 conv1 512/512 1/1/0 res3 add
res3 conv2 512/512 1/1/0 res3 conv1
res3 conv3 512/512 1/1/0 res3 conv2

fc1 512/512 1/1/0 relu(res3 conv3+res3 add)
fc2 512/512 1/1/0 fc1

output 512/N 1/1/0 fc2

(b) Decoder architecture.

Layer Channel I/O Kernel/Str./Pad. Input

feat add -/- -/-/- feat enc 1
⊕

· · ·
⊕

feat enc T
feat conv1 512T /512 3/1/1 feat add
feat conv2 512/512 1/1/0 feat conv1
feat conv3 512/512 3/1/1 feat conv2
feat skip 512T /512 1/1/0 feat add

feat cat -/- -/-/- relu(feat conv3 + feat skip)

(c) Representation projection head architecture.

Table 4: CrossLoc network architecture.

References
[1] DJI PHANTOM 4 RTK. https://www.dji.com/

phantom-4-rtk. 1, 2
[2] Local Swiss reference frames. https://www.

swisstopo.admin.ch/en/knowledge-facts/
surveying-geodesy/reference-frames/
local.html. 1

[3] SWISSIMAGE 10 cm. https://www.swisstopo.
admin.ch/en/geodata/images/ortho/
swissimage10.html. 1, 2

[4] swissSURFACE3D. https://www.swisstopo.
admin.ch/en/geodata/height/surface3d.
html. 1, 2

[5] swissSURFACE3D Raster. https://www.
swisstopo.admin.ch/en/geodata/height/
surface3d-raster.html. 1, 2

[6] TRIUMPH-LS — JAVAD GNSS. https://www.
javad.com/jgnss/products/receivers/
triumph-ls.html. 2

[7] E. Brachmann and C. Rother. Expert sample consensus
applied to camera re-localization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 7525–7534, 2019. 5

[8] E. Brachmann and C. Rother. Visual camera re-localization
from rgb and rgb-d images using dsac. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021. 1, 2, 3,
5
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