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1. Optimization of the Orientation Estimator

The optimization algorithm of the proposed orientation
estimator is in Tab. 1. This algorithm is similar to that of
the scale estimator (introduced in Sec. 3 of the main text).
Their equations in steps 6 and 7 are slightly different.

2. Proof for the Convergence of the Alternate
Optimization Algorithm

The alternate optimization algorithm of the scale estima-
tor is introduced in Sec. 3 of the main text. The algorithm
for the orientation estimator is introduced in Tab. 1. In this
section, the convergence of the algorithm is first proved for
the scale estimator. Then similar proof is introduced for the
orientation estimator.

2.1. Proof for the Scale Estimator

We first briefly revisited the loss function and optimiza-
tion algorithm of the scale estimator, whose details are in-
troduced in Sec. 3 of the main text. The loss function is

min
ωs,S
−
∑
i

S[i]
Zi
·

∑
m|ISm(i)6=NaN

log
(
S̃m [ISm(i)]

)
s.t. S[i] ≥ 0, i = 1, 2, ..., Ns,

Ns∑
i

S[i] = 1.

(1)

Here ωs is the network parameter of the scale estimator. S
is the true distribution of the discretized scales. i is the in-
dex of the discretized scales. Zi is the normalization factor
whose definition is below Eq.(6) in the main text. m is the
index of the transformed images. S̃m is the predicting con-
fidence of the discretized scales. ISm(·) is the function that
maps the index in S to the index in S̃m, whose definition is
Eq.(6) in the main text.

Table 1. Alternate Optimization Algorithm for the Orientation Es-
timator.

Input: image dataset D, maximum iterations T ,
initial value of network parameters ω0

o , the number of
transformed patches M , the largest concerned scale A.
Output: optimized parameter ωo.
Process:

for t from 1 to T :
1 Randomly sample a training image I from D;

2 Randomly sample a coordinate c from I as the keypoint;

3 Randomly sample the scaling factors4Sm ∈ [A−1, A]
and rotation angles4Om ∈ [−π, π], m = 1, 2, ...,M ;

4 Taking c as the center, crop transformed patches Xm

with parameters4Sm and4Om, m = 1, 2, ...,M ;

5 Feed Xm into the estimator whose parameter is ωt−1
o ,

and obtain confidence vectors Õm, m = 1, 2, ...,M ;

6 // fix ωt−1
o and optimize O, getting the solution O∗

i∗ = argmini
∑

m log
(
Õm [IOm(i)]

)
,

and then O∗[i] =

{
1, i = i∗

0, otherwise
;

7 // set O = O∗, and optimize ωo with the gradient ∂L
∂ωo

∂L
∂ωo

= ∂
∂ωo
−
∑

i O∗[i] ·
∑

m log
(
Õm [IOm(i)]

)
,

and update ωt−1
o to ωt

o with a gradient descent algorithm;
end for
ωo ← ωT

o ;

The objective function in Eq. (1) is denoted asL, namely,

L(ωs,S) = −
∑
i

S[i]
Zi
·

∑
m|ISm(i)6=NaN

log
(
S̃m [ISm(i)]

)
(2)
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L is the cross entropy of two discrete distributions. There-
fore, the minimum of L exists.

Eq. (1) is optimized with an iterative algorithm. The net-
work parameter ωs is randomly initialized as ω0

s and is up-
dated as ωt

s after t times iterations. In the t-th iteration, S
and ωs are optimized alternately. First, S is updated with:

S∗[i] =

{
1, i = i∗

0, otherwise

i∗ = argmin
i
− 1

Zi

∑
m|ISm(i) 6=NaN

log
(
S̃m [ISm(i)]

)
.

(3)

Here S̃m is obtained with the current network parameter
ωt−1
s . Note that S∗ maintains the probability constraint in

Eq. (1) because only one element of S∗ is equal to 1 while
the others are equal to 0.

Then ωt−1
s is updated to ωt

s with the gradient descent
algorithm. The gradient is computed as:

∂L

∂ωs
=

∂

∂ωs
−
∑
i

S∗[i]
Zi
·

∑
m|ISm(i) 6=NaN

log
(
S̃m [ISm(i)]

)
(4)

Considering the minimum of L exists, the above algo-
rithm is convergent if the following two inequalities hold:

∀S ∈

{
S
∣∣∣∣ Ns∑

i

S[i] = 1,S[i] ≥ 0, i = 1, 2, ..., Ns

}
,

L(ωt−1
s ,S∗) ≤ L(ωt−1

s ,S)

(5)

and,
L(ωt

s,S∗) ≤ L(ωt−1
s ,S∗). (6)

The proof of Eq. (5) is as below.

Proof.

L(ωt−1
s ,S) = −

∑
i

S[i]
Zi
·

∑
m|ISm(i) 6=NaN

log
(
S̃m [ISm(i)]

)
≥ −
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·

∑
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= −
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S[i]

)
1

Zi∗
·

∑
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log
(
S̃m [ISm(i∗)]

)
= − 1

Zi∗
·

∑
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log
(
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)
)←

∑
i

S[i] = 1

= −
∑
i

S∗[i]
Zi
·

∑
m|ISm(i)6=NaN

log
(
S̃m [ISm(i)]

)← (3)

= L(ωt−1
s ,S∗)

The proof of Eq. (6) is as below.

Proof.
As introduced in Eq. (4), ωt

s is obtained by optimizing
L(ω,S∗) with the gradient descent algorithm while the start
point is ωt−1

s . So ωt
s is the nearby local minimum point of

ωt−1
s . Therefore, with the premise for appropriate learning

rate, the inequality L(ωt
s,S∗) ≤ L(ωt−1

s ,S∗)) holds.

In our implementation, step 7 of the alternate optimiza-
tion algorithm updates ωs only once to ensure efficiency.
Experimental results demonstrate that the S3Esti model is
optimized appropriately with this strategy.

2.2. Similar Proof for the Orientation Estimator

According to Eq. (9) in the main text, the objective func-
tion of the orientation estimator can be denoted as:

L(ωo,S) = −
∑
i

(
O[i] ·

∑
m

log
(
Õm [IOm(i)]

))
(7)

Similar to the proofs in Sec. 2.2, the following two inequal-
ities hold:

∀O ∈

{
O
∣∣∣∣ No∑

i

O[i] = 1,O[i] ≥ 0, i = 1, 2, ..., No

}
,

L(ωt−1
o ,O∗) ≤ L(ωt−1

o ,O)

(8)

and,
L(ωt

o,O∗) ≤ L(ωt−1
o ,O∗). (9)

The definitions ofO∗ and IOm(·) are introduced in Sec. 3 of
the main text. According to Eqs. (8) and (9), the algorithm
of the orientation estimator is also convergent.

3. Results on Relative Pose Estimation Task
Metrics and evaluation configurations. Two metrics
named Prec. [13] and AUC [17] are used to evaluate the
pose estimation accuracy. In the computation of Prec., all
keypoints in one image are re-projected to the other image
with the estimated pose, and a keypoint is considered to be
correctly matched if its normalized distance to the ground-
truth epipolar line is less than 1e-4. The metric AUC first
generates a curve by classifying each estimated pose as ac-
curate or not. Then AUC computes the area under this curve
up to a maximum threshold of 5◦, 10◦ or 20◦.

This experiment uses three keypoint extraction models,
namely SuperPoint [4], POP [16], and HAN HN [10], as
the baseline models. SIFT [8], CovDet [6] and the proposed
S3Esti are used as the scale estimators. Note that the images
in the MegaDepth dataset are generally captured with the
upright cameras, and their orientation changes are relatively
small. Therefore, the orientation estimators of these meth-
ods are not used in this experiment. DRC-Net [7] is also



used as a comparison method. The combination of DRC-
Net and an estimator is not efficient because DRC-Net is a
dense matching method without keypoint localization. So
we do not combine DRC-Net with the estimators in this ex-
periment.
Results. The relative pose estimation results of differ-
ent approaches are shown in Tab. 2. The combinations of
S3Esti and the existing keypoint extraction models outper-
form other competitors. Note that the wide-baseline image
pair is a common situation in the MegaDepth dataset be-
cause of the significant viewpoint changes. The results in
Tab. 2 indicate that S3Esti can improve the matching ac-
curacy of wide-baseline pairs. This superiority should be
helpful to register more images and improve the triangu-
lation precision in 3D reconstruction. Overall, this exper-
iment demonstrates that S3Esti can improve the pose es-
timation accuracy, and explains how S3Esti improves the
performance of 3D reconstruction.

Table 2. Pose Estimation Results on MegaDepth validation set.

Prec. (%)
Pose estimation AUC (%)
@5◦ @10◦ @20◦

DRC-Net w/o keypoint 27.01 42.96 58.31

SuperPoint 59.19 22.06 37.44 52.55
SuperPoint+SIFT 62.86 23.64 39.63 55.40

SuperPoint+CovDet 59.67 23.40 39.39 55.23
SuperPoint+S3Esti 64.11 24.69 40.85 56.75

POP 54.33 25.85 42.02 56.75
POP+SIFT 56.71 27.10 43.94 59.13

POP+CovDet 55.32 27.08 43.58 58.77
POP+S3Esti 58.61 29.57 46.09 61.49

HAN HN 55.21 23.47 40.12 55.80
HAN HN+SIFT 62.82 28.62 45.78 61.71

HAN HN+CovDet 56.53 27.77 44.16 59.74
HAN HN+S3Esti 62.50 31.09 48.42 63.97

4. Deriving the Scale and Orientation Changes
from the Homography Transformation

In the experiment, it is not straightforward to compute
the estimation errors of the scale and orientation for a sin-
gle patch because the ground-truth scale and orientation are
hardly determined. Instead, we evaluate the estimation er-
rors by jointly considering a pair of patches because it is
easier to obtain the ground truth of the relative changes
of scales and orientations. Note that the image pairs in
HPatches [1] generally involve homography transforma-
tions. Therefore, we introduce how to approximately derive
the ground-truth changes of the scale and orientation from
the ground-truth homography matrices.

Fig. 1 shows the process to compute the scale and ori-

Ground-truth
homography

matrix

The first image The second image

Figure 1. The scale and orientation changes of every keypoint
after a homography transformation. The process to compute these
changes consists of four steps. First, the keypoints in the first
image are extracted. Then the horizontal and vertical lines with
twenty-pixel length are drawn across every keypoint. Each pair
of the horizontal and vertical lines is denoted as a “+”. Second,
every “+” is transformed to the second image with the ground-truth
homography matrix. Third, for any keypoint, the scale change is
the quotient that its size in the second image is divided by its size
in the first image. Here the size of a keypoint is the product of
the lengths of two lines in the “+”. Fourth, for any keypoint, the
orientation change is the average rotation angle of the two lines in
the “+”.

entation changes of every keypoint after a homography
transformation. With this approach, different keypoints in
the same images may have different scale and orientation
changes. This phenomenon is consistent with the nonuni-
form characteristic of the homography transformation.

In Sec. 4.2 of the main text, two subsets HPatches-view-
small and HPatches-view-large are divided according to the
scale and orientation changes of the center point in the im-
age. The computation process of the changes is the same
as that in Fig. 1. Here the center point is selected to repre-
sent the entire image because its average distance to all the
keypoints is relatively small.

Another related detail is how to evaluate the estimation
error of a soft estimator. Note that an estimator predicting
multiple scales and orientations is termed as a soft estima-
tor in this paper. Fig. 2 demonstrates the process to find
the nearest matching patch in the second image for a given
patch in the first image. The scale/orientation pair corre-
sponding to the highest similarity will be evaluated with the
estimation error metrics.

5. More Results on the Estimation Error
Metrics

Tab. 2 of the main text shows the overall estimation er-
rors of different estimators. In this section, more details are
provided for the estimation errors. Figs. 3 and 4 display
the distributions of the estimation errors with the cumu-
lative frequency histograms, involving both the HP-view-
small and HP-view-large datasets. Every curve corresponds
to a combination of a keypoint extraction model and an es-
timator. Here six keypoint extraction models are consid-
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Figure 2. The process of finding the nearest matching patch in the
second image for a given patch in the first image. This figure takes
the orientation estimation as an example. The pair of orientations
corresponding to the highest similarity will be evaluated with the
estimation error metrics.

ered, namely, HAN HN (HesAffNet+HardNet [9]), Super-
Point [4], Key.Net HN (Key.Net [5]+HardNet), R2D2 [12],
POP [16] and LFNet [11]. Every keypoint extraction model
is combined with at least five scale&orientation estimators,
namely SURF [2], SIFT [8], CovDet [6], and the proposed
S3Esti and S3Esti-S. “No esti” represents that no estima-
tor is performed while the scale and orientation are as-
signed as 1.0 and 0◦ respectively. Note that LFNet [11] and
HesAffNet [10] have their own estimators, whose results are
also shown in Figs. 3 and 4. Besides, HesAffNet [10] does
not perform the orientation estimation itself. Another model
is designed in the same paper solely for the orientation esti-
mation1. The results with the separate orientation estimator
are annotated as “HesAffNet-O”. The results without this
orientation estimator are annotated as “HesAffNet”.

A better estimator should provide a larger number of ac-
curate estimations of the scale and orientation. Overall, the
proposed S3Esti reliably outperforms other estimators on
the HP-view-large dataset because the curves of S3Esti are
generally on the upper and left of the others. Furthermore,
S3Esti is competitive on the HP-view-small dataset. These
results are consistent with the improvements on the image
matching task (Sec. 4.4 of the main text and Sec. 6 of this
supplementary), in which S3Esti improves the matching ac-
curacy on HP-view-large while maintaining the accuracy on
HP-view-small.

1We sincerely thank our reviewer for pointing out this detail.

6. More Results on Image Matching Task

Fig.5 of the main text shows the superiority of
POP+S3Esti and HAN HN+S3Esti. In this section, the
combinations of S3Esti and more keypoint extraction mod-
els are evaluated. Figs. 5 and 6 show the matching accuracy
for six keypoint extraction models on both the HP-view-
small and HP-view-large datasets. Every curve corresponds
to a combination of a keypoint extraction model and an esti-
mator. The notations of the keypoint extraction models and
estimators are the same as those of Figs. 3 and 4, which are
introduced in Sec. 5.

Overall, the proposed S3Esti outperforms other estima-
tors on HP-view-large. Its accuracy improvements relative
to the baselines are overall more than 50%. Furthermore,
S3Esti can maintain the accuracy of the baseline model on
HP-view-small, generally slightly better than other estima-
tors.

7. Re-implementation of CovDet

In Secs 4.3 and 4.4 of the main text, CovDet [6] is eval-
uated as a comparison model. This estimator is our re-
implementing model. We re-implement CovDet for two
reasons. First, the original CovDet only estimates the key-
point orientation but does not concern the keypoint scale.
Therefore, the scale estimator needs to be implemented to
complete the comparison. Second, the network architec-
ture of the original CovDet is simpler than ours. So we
re-implement it with the backbone architecture of S3Esti to
ensure fairness.

The details of our implementation for the scale estima-
tor of CovDet are as below. Following the configuration of
the orientation estimator of CovDet, the scale estimator is
implemented as a regression model, which takes a patch as
input and outputs a scalar to represent the scale. The scale is
truncated with the range [ 1A , A]. Here A = 9 following the
configuration in the main text. Then the scale is represented
as a scaling transformation matrix, which can be optimized
with Eq. (15) in CovDet [6].

8. Ablation Experiment

Different ablation models are evaluated in this section.
The first experiment is designed to verify the contributions
of different factors in S3Esti. The results on the HP-view-
large dataset are shown in Fig. 7. POP [16] and HAN HN
[9, 10] are used as two baseline models. “xx+S3Esti” indi-
cates a model integrated with the full S3Esti. “xx+S3Esti-
w/o s” removes the scale estimator from “xx+S3Esti”,
while “xx+S3Esti-w/o o” removes the orientation estima-
tor. “xx+S3Esti-S” is a hard estimator by setting K = 1,
as introduced in the Sec. 4.1 of the main text. K is the
maximal number of the scales and orientations allowed to
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Figure 3. The cumulative frequency histograms of the estimation error on the HP-view-small dataset, evaluated for different combinations
of the keypoint extraction model and estimator. Note that the legends only show the names of estimators, while the names of keypoint
extraction models are marked on the top of each column. The mean values of the errors are also shown in the legends. The curves of a
better estimator should be on the upper and left of the others. The proposed S3Esti outperforms other estimators in the scale estimation, and
is competitive in the orientation estimation. Note that the rotation changes in HP-view-small are slight. So the lowest error of orientation
is obtained by No esti, which is a fictitious model predicting the orientation as the constant zero.
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Figure 4. The cumulative frequency histograms of the estimation error on the HP-view-large dataset, evaluated for different combinations
of the keypoint extraction model and estimator. Note that the legends only show the names of estimators, while the names of keypoint
extraction models are marked on the top of each column. The mean values of the errors are also shown in the legends. The curves of a better
estimator should be on the upper and left of the others. The proposed S3Esti outperforms other estimators in all the combinations. No esti
is inappropriate for this dataset because HP-view-large involves much more significant geometric changes compared with HP-view-small.

be kept. “xx+S3Esti-Two” sets K = 2, which is different
from “xx+S3Esti” setting K = 3.

Overall, POP+S3Esti and HAN HN+S3Esti outperform
other ablation models, which demonstrates that both scale

and orientation estimators contribute to the image accu-
racy. The fact that “xx+S3Esti” is superior to “xx+S3Esti-
S” verifies that the soft predictions are more robust than the
hard predictions. The accuracy of “xx+S3Esti-Two” is only
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Figure 5. MScore and HA results on the HP-view-small dataset, evaluated for different combinations of the keypoint extraction model and
estimator. Note that the legends only show the names of estimators, while the names of keypoint extraction models are marked on the top
of each column. Generally, the proposed S3Esti is slightly better than other estimators. No esti, the model without any estimator, is very
competitive on HP-view-small because this dataset only involves slightly geometric changes.
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Figure 6. MScore and HA results on the HP-view-large dataset, evaluated for different combinations of the keypoint extraction model and
estimator. Note that the legends only show the names of estimators, while the names of keypoint extraction models are marked on the top
of each column. No esti is inappropriate for HP-view-large that involves significant geometric changes. The proposed S3Esti outperforms
other estimators in all combinations. Its improvements relative to the original keypoint extraction models are overall more than 50%.

slightly lower than that of “xx+S3Esti”, which demonstrates
that keeping at most two (rather than three) scales and ori-
entations can also give effective improvements.

The second experiment is designed to verify that lower-
ing the estimation errors of the scale and orientation can im-

prove the matching accuracy. The results on the HP-view-
large dataset are shown in Fig. 8. These results demon-
strate that the lower estimation error of the scale and ori-
entation generally leads to higher matching accuracy. The
proposed S3Esti has lower estimation errors than SURF [2]
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Figure 7. Results of different ablation models on the HP-view-
large dataset. Overall, POP+S3Esti and HAN HN+S3Esti outper-
form other ablation models.

and SIFT [8], as shown in Sec. 4.3 of the main text. This
superiority should be the reason why S3Esti achieves higher
matching accuracy in Fig. 8.

The third experiment compares two different model ar-
chitectures. As introduced in the main text, S3Esti im-
plements the scale and orientation estimators as two sep-
arate networks. Another variant named S3Esti Joint is con-
structed in this section. S3Esti Joint implements the scale
and orientation estimators with a shared backbone and two
output heads. The structures of the backbone and output
heads are identical to those of S3Esti.

As introduced in Sec. 4.1 of the main text, S3Esti con-
verges well with directly performing the proposed alternate
optimization algorithm. However, S3Esti Joint usually con-
verges to a poor local minimum with the same algorithm.
The reason may be that the estimations of scale and orien-
tation are two problems with low relevance. Therefore, the
optimization directions of the two problems may be irrec-
oncilable with a poor initialization of network parameters.
We carefully design a training strategy to overcome this dif-
ficulty, consisting of two stages:

(1) Preliminarily optimize S3Esti Joint with only the loss
function of orientation estimation. In this stage, the loss
of scale estimation is ignored to lower the optimization
difficulty. The orientation estimation error (O. Err.) is
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𝐸𝐸𝑠𝑠 = 1.5, 𝐸𝐸𝑜𝑜 = 40°
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Error threshold 𝜸𝜸 (px)

Figure 8. Results of the models corresponding to different levels
of estimation errors. To analyze the “upper bound” of the im-
provement provided by the scale and orientation estimation, a per-
fect “estimator” is constructed to output the scale and orientation
consistent with the image pairs’ ground-truth homography matri-
ces. The HA curve of the “perfect estimator” is indicated with
“Es = 0.0, Eo = 0◦”, where Es and Eo represent the estimation
errors of the scale and orientation. Then different levels of random
errors are added to the perfect “estimator”, whose HA results cor-
respond to the curves from “Es = 0.5, Eo = 20◦” to “Es = 1.5,
Eo = 60◦”.

computed for every mini-batch during training. This
stage is finished once O. Err. on the current mini-batch
is smaller than 75◦, and then the second stage is started.
This O. Err. threshold is appropriate for stable conver-
gence in our experiment, but a smaller threshold may
also work. This stage is generally finished within one
epoch on the MS COCO 2014 training set.

(2) Optimize S3Esti Joint with the complete loss function
of scale&orientation estimation. The optimization con-
figurations of this stage are identical to those of S3Esti.
This stage generally finished after 30 epochs on the MS
COCO 2014 training set, similar to S3Esti.

Intuitively, the first training stage provides a better ini-
tialization corresponding to smaller orientation estimation
error. In our experiment, this strategy makes S3Esti Joint
converge well. Figs. 9 and 10 show the estimation
errors and matching accuracy of POP+S3Esti Joint and
HAN HN+S3Esti Joint. Overall, S3Esti Joint achieves a
similar accuracy compared with S3Esti.
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Figure 9. The cumulative frequency histograms of the estimation
error on the HP-view-large dataset, evaluated for the S3Esti and
S3Esti Joint estimators. The mean values of the errors are also
shown in the legends. S3Esti and S3Esti Joint obtain almost iden-
tical estimation errors.

9. Comparison with the AEU Model
AEU is the abbreviation of Affine Estimation Unit [3].

Strictly speaking, AEU is not an estimator of the scale or
orientation. The prediction of AEU is the relative scaling
and rotation changes between two patches. A characteristic
of AEU is that its computation complexity is O(n2), where
n is the number of keypoints. Note that the complexity of a
scale or orientation estimator is O(n).

The results of AEU2 and S3Esti are shown in Fig. 11.
AEU is slightly superior to S3Esti. However, the inference
speed of AEU is much slower than S3Esti, which is dis-
cussed in Sec. 10.

10. Inference Speed
The time consumptions of S3Esti and some comparison

estimators are shown in Tab. 3. All the four estimators are
combined with the HesAffNet detector [10] and HardNet
descriptor [9]. The first part of the results is evaluated on the
HPatches [1] dataset, in which an average of 1000 keypoints
are extracted in an image (denoted as #Points=1000.0). The

2Note that the official code of AEU [3] has not been released when
this paper was submitted. Therefore, we re-implement AEU based on the
backbone architecture of S3Esti.

M
at

ch
in

g 
Sc

or
e

H
om

og
ra

ph
y 

A
cc

ur
ac

y

Error threshold 𝝐𝝐 (px)

Keypoint: HAN_HNKeypoint: POP

Error threshold 𝝐𝝐 (px)

Error threshold 𝜸𝜸 (px)Error threshold 𝜸𝜸 (px)

Figure 10. MScore and HA results on the HP-view-large dataset,
evaluated for the S3Esti and S3Esti Joint estimators. Overall,
S3Esti and S3Esti Joint achieve similar matching accuracy. There-
fore, it is feasible to jointly train the scale and orientation estima-
tors of S3Esti.
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Figure 11. Comparison between the AEU [3] model and the pro-
posed S3Esti. Overall, AEU is slightly superior to S3Esti. How-
ever, the inference speed of AEU is much slower than S3Esti,
which is discussed in Sec. 10.

second part of results is evaluated on the Madrid Metropo-
lis sequence of the ETH [14] dataset, in which an average
of 4796.4 keypoints are extracted in an image (denoted as
#Points=4796.4). “Esti&Rectify” represents the time con-
sumption of the scale&orientation estimation and patch rec-
tification. “Desc” represents the time consumption of com-
puting the description vectors for the rectified patches. All



the time consumptions are evaluated with an Intel Core i9-
9820X CPU and a GeForce RTX 2080 Ti GPU. The recti-
fying processes are all implemented with the grid sample()
function in Pytorch, which is accelerated with the GPU op-
eration.

AEU [3] is slow because of its O(n2) complexity, while
SIFT, CovDet and S3Esti are much faster with the O(n)
complexity. Although S3Esti and CovDet use the same
backbone architecture, S3Esti is slower than CovDet be-
cause S3Esti predicts multiple scales&orientations and in-
volves multiple rectified patches. Still, the speed of S3Esti
is acceptable for many tasks, such as offline image registra-
tion and 3D reconstruction.

Overall, S3Esti can reliably improve the matching accu-
racy compared with the existing estimators while maintain-
ing an acceptable speed for offline tasks.

Table 3. Time Consumption (Second) of Different Estimators. Ev-
ery estimator is combined with the HesAffNet [10] keypoint detec-
tor and the HardNet descriptor [9] to finish this evaluation.

#Points=1000.0 #Points=4796.4
Esti&Rectify Desc Esti&Rectify Desc

SIFT 0.047 0.0005 0.26 0.0018
AEU 63.51 0.28 1390.23 5.88

CovDet 0.10 0.0003 0.46 0.0013
S3Esti 0.21 0.0011 1.14 0.0032

11. More Visualization Results

More visualization results are shown in this section. As
a supplement for Fig. 5 in the main text, Fig. 12 shows
some matching results for the combination of SuperPoint
[4] and S3Esti, termed as SuperPoint+S3Esti. The results
demonstrate that SuperPoint+S3Esti reliably improves the
matching accuracy under significantly geometric changes.

As introduced in Sec. 4.5 of the main text, S3Esti can de-
crease the reprojection error of 3D reconstruction. Fig. 13
visualizes how the reprojection error impacts the recon-
struction result. The point cloud with S3Esti has clear de-
tails and fewer outliers.

Fig. 14 shows more intermediate results of S3Esti. Even
though some new patterns appear after a viewpoint change,
S3Esti can provide similar rectified patches by predicting
multiple scales and orientations.
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