
A. Limitations and future work
Although we have improved upon the state-of-the-art,

there is still a large room for improvement on datasets other
than Kinetics. Furthermore, we have relied on models pre-
trained on large image- or video-datasets for initialization.
Reducing this dependence on supervised pretraining is a
clear avenue of future research. We have conducted thor-
ough ablations on standard transformer architectures [1, 4],
and will investigate if our approach is complementary to
recent, spatial-pyramid based multiscale transformer en-
coders such as MViT [5] and Swin [7].

Societal impact. Video classification models can be used in
a wide range of applications. We are unaware of all poten-
tial applications, but are mindful that each application has
its own merits, and that also depends on the intentions of
the individuals building and using these systems. We also
note that training datasets may contain biases that models
trained on them are unsuitable for certain applications.

B. Additional experiments

In this supplementary, we provide additional experi-
mental details. Section B.1 provides accuracy-FLOPs and
accuracy-throughput comparison between two model vari-
ants of ViViT and MTV. Section B.2 provides the effect of
spatial resolution of tubelets. Section B.3 and Section B.4
provides details of our training hyperparameters and model
configurations used in our experiments.

B.1. Changing transformer encoder architecture

We present additional results by changing the trans-
former architecture used within our multiview encoder.
Specifically, we use the unfactorized ViViT transformer en-
coder (Model 1 of [1]). In this variant, each transformer en-
coder layer computes self-attention over all spatio-temporal
tokens. This makes our multiview transformer encoder
cover a wide range of spatial and temporal dimensions
across different views. A one-layer MLP with hidden di-
mension of 3072 is used as the global encoder for our un-
factorized MTV model.

As shown in Fig. 1, MTV (unfactorized) consistently
outperforms its single-view counterpart (i.e. ViViT unfac-
torized) for every scale (see Fig. 1a) and corresponds to
a better accuracy-throughput curve as shown in Fig. 1b.
Note how MTV can more than double the throughput of
ViViT unfactorized, whilst still improving its accuracy,
for each model scale. Specifically, MTV (unfactorized)
H/4+B/8+S/16+Ti/32 model leads to a significant speed-up
by 172% while still keeping a higher accuracy of 0.4% im-
provement compared to ViViT-H.

Moreover, we report the accuracy-throughput compari-
son between MTV and ViViT factorized model (ViViT-FE)
in Fig. 1d. Note that the accuracy-FLOPs comparison is al-
ready reported in paper Section 4.3. The improvements in

Table 1. Effect of spatial resolution of tubelets. All experiments
are conducted on Kinetics 400 using the model variant B/4+Ti/16.
Accuracies are for 4× 3 crops.

Tubelet spatial size GFLOPs Top-1

B Ti
24× 24 16× 16 68 78.1
16× 16 24× 24 165 80.5
16× 16 16× 16 168 80.5
16× 16 12× 12 169 80.6
12× 12 16× 16 295 81.0

accuracy-throughput, and accuracy-FLOPs remain signifi-
cant in this setting.

Note that the unfactorized ViViT transformer encoder,
which attends to all spatio-temporal tokens, is less efficient
than the Factorized Encoder architecture that we used in the
main paper. However, we achieve larger relative improve-
ments in accuracy/computation trade-offs compared to the
corrsponding single-view ViViT baseline when using this
encoder architecture.

B.2. Spatial resolution of tubelets
We study the effect of the spatial resolution of tubelets in

Tab. 1. We use our B/4 + Ti/16 model variant, and vary the
spatial resolution of the tubelets. Our results indicate that
the accuracy is primarily impacted by the spatial resolution
of the large encoder. We also note that processing more
tokens, and thus using more computation, typically results
in higher accuracies.

B.3. Hyperparameters for each datasets
Table 2 details the hyperparamters used in all of our ex-

periments. We use synchronous SGD with momentum, a
cosine learning rate schedule with linear warmup, and a
batch size of 64 for all experiments on the Kinetic datasets.
We found that larger batch size and additional regulariza-
tion are helpful when training on the smaller Epic Kitchens
and Something-Something v2 datasets, as also noted by [1].

B.4. Model configurations
Table 3 summarizes our model configurations of each

view for our multiview transformer encoder. For the back-
bone of each view, we consider five ViT variants, “Tiny”,
“Small”, “Base”, “Large”, and “Huge”. Their settings
strictly follow the ones defined in BERT [3] and ViT [4, 8].
For the global encoder, all model variants of MTV use the
same global encoder which follows the “Base” architecture,
except that the number of heads is set to 8 instead of 12. The
reason is that the hidden dimension of the tokens should be
divisible by the number of heads for multi-head attention,
and the number of hidden dimensions across all backbone
sizes is divisible by 8 (as shown in Tab. 3). All model vari-
ants of MTV (unfactorized) use a one-layer MLP with the
same hidden dimension as the “Base” architecture.
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Figure 1. Accuracy/complexity trade-off between ViViT / ViViT-FE [1] (blue) and our MTV (unfactorized) / MTV (red). MTV (unfac-
torized) is consistently better and requires less FLOPs (see Fig. 1a) than ViViT to achieve higher accuracy across different model scales
(indicated by the dotted green arrows pointing upper-left). With additional FLOPs, MTV shows larger accuracy gains (shown by the dotted
green arrows pointing upper-right). The lower number of FLOPs is translated to higher throughput (clips per second), as indicated by the
green arrows in Fig. 1b. Note how MTV can more than double the throughput of ViViT unfactorized, whilst still improving its accuracy,
across all model scales. Similar findings are also observed by the comparison between ViViT-FE and MTV model in Fig. 1c and Fig.
1d. Note that Fig. 1c appeared as Figure 3 in the main paper, and is included here for clarity and consistency. All speed comparisons
are measured with the same hardware (Cloud TPU-v4). The complexity is for a single 32 × 224 × 224 × 3 input video (denoted as
T ×H ×W × C), and the accuracy is obtained by 4× 3 view testing.



Table 2. Training hyperparamters for experiments in the main paper. “–” indicates that the regularisation method was not used at all. Values
which are constant across all columns are listed once. Datasets are denoted as follows: K400: Kinetics 400. K600: Kinetics 600. K700:
Kinetics 700. MiT: Moments in Time. EK: Epic Kitchens. SSv2: Something-Something v2.

K400 K600 K700 MiT EK SSv2

Optimization
Optimizer Synchronous SGD
Momentum 0.9
Batch size 64 64 64 256 128 512
Learning rate schedule cosine with linear warmup
Linear warmup epochs 2.5
Base learning rate 0.1 0.1 0.1 0.1 0.2 0.5
Epochs 30 30 30 30 80 100

Data augmentation
Random crop probability 1.0
Random flip probability 0.5 0.5 0.5 0.5 0.5 –
Scale jitter probability 1.0
Maximum scale 1.33
Minimum scale 0.9
Colour jitter probability 0.8 0.8 0.8 0.8 – –
Rand augment number of layers [2] – – – – 3 1
Rand augment magnitude [2] – – – – 10 15

Other regularisation
Stochastic droplayer rate [6] 0.1 0.1 0.1 0.1 0.1 0.3
Label smoothing [9] – – – – 0.2 0.2
Mixup [10] – – – – 0.1 0.3

Table 3. Model configurations for each view of MTV.

Model name Hidden size MLP dimension Number of
attention heads

Number of
encoder layers

Tubelet spatial
size

Tiny 192 768 3 12 16
Small 384 1536 6 12 16
Base 768 3072 12 12 16
Large 1024 4096 16 24 16
Huge 1280 5120 16 32 14
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