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A. Pseudo-code for HyperFD
We summarize the flow of the full algorithm as follows.

B. Experiment setups
B.1. Detector training

We use RetinaFace [9] with MobileNet-V2 [30] (chan-
nels ⇥0.5 variant). The channels of FPN and context mod-
ules are set to 80. The backbone is firstly pre-trained on
ImageNet [7], and then the full detector is further pre-
trained on WIDER-Face [36] to boost the performance of
the model, especially on small datasets like PASCAL [11].
For training, we set batch size to 32, image size to 640⇥640
(after crop), and uses LeakyReLU as activation functions.
We perform a validation per 10 epochs of training, and
we adopt a “Reduce LR on Plateau” policy that decays the
learning rate by 10 when metric on validation set stagnates
in the 5 past evaluations. The maximum epochs of training
is 1000, but we stop the training when the validation per-
formance no longer increases for 8 times. For evaluation,
we follow [9,22,35] to rescale the shorter side of images to
720 pixels, ignore bounding boxes smaller than 36 pixels,
and perform Non-maximum Suppression (NMS) on over-
lap predictions with a 0.4 IoU threshold. We select the best
model in history and evaluate it on test dataset. We use
Average-Precision at IoU 0.5 (AP@50) as our evaluation
metric, with the evaluation scheme implemented in MMDe-
tection [5].

B.2. Detection datasets
We gather 12 public datasets for our evaluation,

which includes AFLW [24], Anime [27], FaceMask [16],
FDDB [17], FDDB-360 [13], MAFA [15], Pascal
VOC [11], UFDD [25], UMDAA-02 [23], WIDER-
Face [36], WIDER-360 [14], WIKI [29]. The datasets
span multiple categories, including faces with masks, anime
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Algorithm 1 HyperFD
Input: Search space of configurations C. Offline pre-

pared datasets Doffline. A sequence of online datasets
D = {d1, d2, . . . , dN}. Detector training and evaluation
pipeline AP(c, d). Budget for each task B. Batches to
update for each task Niters. Iterations of updates of trans-
formation module Ntrans. Learning rates ⌘z and ⌘✓.

Output: Best configurations {c⇤1, c⇤2, . . . , c⇤N}.
. Warm-up
Soffline  {(c, d,AP(c, d)) | c 2 C, d 2 Doffline}.
✓  argmin✓ Ltotal(F ;Soffline).
Spast  {}.
✓(0)  ✓.

for t = 1, 2, . . . , N do
. Inference
Get top-B configs Ct = {c1, c2, . . . , cB} with F .
c⇤t  argmaxi AP(Ct,i, dt). . Costly step

. Training
S  {(c, dt,AP(c, dt) | c 2 Ct}
for i = 1, 2, . . . , Niters do

. Training of transformation module
for k = 1, 2, . . . , Ntrans do

for u = 1, 2, . . . , t� 1 do
Z(u)  Z(u) � ⌘zrZ(u)Ltrans(Z(u);Doffline).

end for
end for
. Training of performance ranker
✓  ✓ � ⌘✓r✓Ltotal(F ;S

S
Spast).

end for

✓(i)  ✓.
Spast  Spast

S
{(c,�t,AP(c, dt) | c 2 Ct}.

end for
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Dataset # Images # Faces # Faces
Train Val Test per image w. landm.

AFLW [24] 12477 2079 6239 1.5 79%
Anime [27] 3703 617 1851 1.2 None

FaceMask [16] 2554 425 1278 1.7 None
FDDB [17] 1693 282 846 1.8 None

FDDB-360 [13] 4867 811 2433 1.6 None
MAFA [15] 23261 2585 4927 1.0 None

Pascal VOC [11] 511 85 255 1.9 None
UFDD [25] 1781 296 892 3.7 None

UMDAA-02 [23] 16934 1881 4708 1.0 None
WIDER-Face [36] 9665 1600 4832 12.2 80%
WIDER-360 [14] 38321 6394 19145 7.3 None

WIKI [29] 20941 3490 10471 1.2 None

Table 1. Statistical information of all datasets.

faces, faces from fisheye cameras, selfies from cellphones
and etc. A preview of the datasets is shown in Figure 1.
Apart from cleanup for illegal bounding boxes and cor-
rupted images (particularly on WIKI, WIDER-Face, and
UMDAA-02), the quality of annotations on AFLW and
WIKI is particularly low, as they are designed for other
vision tasks (e.g. facial landmarks and face recognition).
Thus, we only consider the original ground truth bound-
ing boxes as a reference and use RetinaFace [9] to ensure
the quality of weak labels with bipartite matching towards
old labels. Specifically, we replace the original ground truth
labels with the weak labels if IoU threshold > 0.4 by bipar-
tite matching. For unmatched labels, we mark the confi-
dence > 0.95 as positive. For hard cases that detectors have
little confidence, we manually checked each of them. We
also unify the format of facial landmarks to 5 points (i.e.
eyes, noses, mouths), preserving the landmark annotations
in AFLW (downsize the 19 landmarks) and WIDER-Face.
Finally, we split each dataset into three splits: train, val and
test, in the ratio of 6:1:3. This split is fixed and we will use
it in all our following experiments. The overall statistics of
all processed datasets are provided in Table 1.

B.3. Search space

The hyper-parameter search space (HPO space) is shown
in Table 2.

The neural architecture search space (NAS space) is
shown in Table 3. The space is essentially a channels
⇥0.5 variant of ProxylessNAS search space [3]. For de-
tection purposes, we extract feature maps from the end of
stage 3, 5 and 7, with down-sampling by 8, 16 and 32 re-
spectively. To benefit from pre-training, we use parameter-
remapping [12], where we train the largest network in the
search space first, and map the weights to the target network
with a set of rules.

Optimizer { SGD, Adam }
Learning rate {3 · 10�4, 10�3, 3 · 10�2}
Min crop ratio {0.3, 0.55}
IoU threshold {0.4, 0.5, 0.6}
Location loss weight {2, 4, 8}
Neg-pos samples ratio {2, 7}

Table 2. HPO space contains 216 combinations of hyper-
parameters. For IoU threshold, we show the positive matching
threshold in the table, while the negative threshold = pos/2+0.05.

Stage Depth Expand ratio Kernel size Width Stride

1 1 1 3 8 1
2 1–3 {4, 6} {3, 5, 7} 12 2
3 1–3 {4, 6} {3, 5, 7} 16 2
4 2–4 {4, 6} {3, 5, 7} 32 2
5 3–4 {4, 6} {3, 5, 7} 48 1
6 2–4 {4, 6} {3, 5, 7} 80 2
7 1 {4, 6} {3, 5, 7} 160 1

Table 3. Search space for neural architectures.

Task Model Layer

Classification EfficientNet [32] Last hidden layer
Classification IBN-Net [26] Last hidden layer
Classification Places365 [18] Last hidden layer
Detection DETR [4] Transformer encoder
Detection RetinaNet [21] FPN
Detection CenterFace [35] Before heads
Face recognition ArcFace [8] † Final layer
Face emotion FerPlus [1] Last hidden layer
Face age VGG16-Age [20] Final layer
Face gender VGG16-Gender [20] Last hidden layer
Label statistics ‡ – –

Table 4. List of pre-trained models used to generated features for
augmentation. †: For ArcFace, we have two variants which feed
the full image and the dominant face crop respectively. ‡: Areas of
bounding boxes on the image, described by scipy.describe.

B.4. Dataset augmentation
Dataset augmentation intends to create a large number

of diverse datasets. To this end, we first extract features for
each image using pre-trained models with diverse usages
collected from model zoos (e.g., ONNX model zoo1). We
use intermediate layers of features so that fine-grained dis-
tribution information is not lost. Table 4 shows a list of the
used pre-trained models.

For each set of generated features, we run multiple com-
binations of clustering algorithms and configurations to get
a diverse series of clustering results. The list is described in
Table 5. The implementations are with scikit-learn, and we
throw away too small sub-datasets generated (less than 800
images) and too large subsets (less than 800 images are not

1https://github.com/onnx/models



Figure 1. Preview of 12 datasets. We show 3 images per dataset.

# Algorithm Configuration

1 K-Means MaxIter=2000, k-means++ init
2 K-Means MaxIter=2000, random init
3 PCA + K-Means #components=20
4 PCA + t-SNE + K-Means #components=2
5 DBSCAN eps=10, metric=l2
6 DBSCAN eps=10, metric=cosine
7 Agglomerative
8 Agglomerative affinity=mahattan
9 Birch [37]

Table 5. List of clustering algorithms and configurations to group
the images based on features. The “number of clusters” is iterated
in 2, 3, 5 and 7 for each configuration. The interpretation of con-
figurations corresponds to parameters in scikit-learn.

selected). We respect the original train-validation-test split,
and also remove subsets where the split becomes too devi-
ated from balance. Finally, we have got 1418 sub-datasets
generated from the original WIDER-Face dataset.

B.5. Performance ranker
Important hyper-parameters for performance ranker is

shown in Table 6. Notably, we make the samples from
Soffline to be more likely to be sampled, because there are
significantly more offline samples than online samples.

For configuration encoder used in NAS, we use GIN [34]
with 2 layers, dropout rate 0.2 and a learn-able epsilon.
We add two virtual nodes to aggregate information from all
nodes in each layer, similar to [31].

To accelerate the evaluation and save the huge computa-
tional cost to train and evaluate configurations repeatedly,
we build a benchmark, i.e., a performance lookup table,
which consists of the validation and test AP of a specific
configuration trained on a specific dataset. For each dataset,
we randomly sample 200 distinct configurations from HPO
and NAS space respectively. Afterwards, the ranker is in-
ferenced on the 200 and the best is selected from them. This
practice follows many recent NAS works [2,19,28,33]. No-
tably, for larger space, the random sampling step can be eas-

Hidden units 64
Learning rate (⌘z and ⌘✓) 0.0001
Optimizer Adam
Batch size 4
Niters (batches per task) 50
Ntrans (transf. iterations) 20
�sim (triplet loss weight) 0.03
↵ (triplet loss margin) 0.5
�reg (SI weight) 10000
|Soffline| : |Spast| : |S| 5 : 1 : 1
Exploration-exploitation ratio 0.5

Table 6. Hyper-parameters to train the performance ranker. See
Alg. 1 and §3 for explanation of notations.

ily replaced with an active learning approach (e.g., bayesian
optimization), but since the newly sampled configuration is
likely to be a unseen one, we would not be able to use a
benchmark to accelerate this process.

C. More experiment results
The performance of HyperFD on each dataset is shown

in Table 7. Since the datasets can appear in random order
during our evaluation, this table shows an average case of
how much the dataset can benefit from others. HyperFD
outcompetes baselines on most of the datasets. We also
note that different datasets have different difficulties, caus-
ing performance gains to diverse. For example, we can
easily get 1.1% AP improvement on WIDER-360, but for
WIKI, the baseline is very close to perfect and the room
for improvement is very narrow. The standard deviations of
multiple runs with different random seeds are also shown in
those tables.

D. Analysis of performance benchmark
As we have collected a large number of triplets (con-

figurations, datasets and performances), we share some of
the observations on this performance benchmark. We hope



Method AFLW ANIME FaceMask FDDB FDDB-360 MAFA Pascal VOC UFDD UMDAA-02 WIDER-360 WIKI Average
Random search 99.15±0.12 97.58±0.18 94.32±0.43 97.42±0.22 97.00±0.18 92.98±0.48 97.36±0.41 78.50±0.59 99.63±0.04 67.23±0.97 99.67±0.08 92.80±9.90
Best on WIDER 99.00±0.00 97.53±0.00 94.02±0.00 97.11±0.00 97.22±0.00 93.13±0.00 97.12±0.00 78.27±0.00 99.60±0.00 69.53±0.00 99.63±0.00 92.92±9.36
Tr-AutoML 99.12±0.12 97.58±0.16 94.51±0.35 97.34±0.29 96.91±0.23 93.28±0.35 97.20±0.60 78.59±0.46 99.60±0.06 66.84±1.36 99.67±0.06 92.79±9.96
HyperSTAR 99.09±0.19 97.60±0.16 94.32±0.46 97.40±0.25 96.97±0.25 92.86±0.40 97.21±0.32 78.76±0.42 99.63±0.04 66.86±1.23 99.66±0.06 92.76±9.94
SCoT 99.17±0.11 97.62±0.20 94.25±0.55 97.38±0.16 96.91±0.23 92.80±0.46 97.39±0.36 78.49±0.57 99.62±0.04 67.40±0.72 99.69±0.04 92.79±9.86
HyperFD (ResNet) 99.21±0.09 97.69±0.14 94.47±0.32 97.53±0.12 96.93±0.21 92.68±0.54 97.53±0.39 78.63±0.41 99.63±0.03 66.59±0.79 99.71±0.04 92.78±10.05
HyperFD (stats) 99.21±0.06 97.61±0.16 94.36±0.36 97.54±0.12 96.91±0.15 92.83±0.34 97.56±0.12 78.77±0.48 99.62±0.04 66.79±1.07 99.70±0.04 92.81±9.98
HyperFD (MSE) 99.17±0.08 97.43±0.20 94.43±0.48 97.42±0.24 96.96±0.14 93.08±0.46 97.34±0.26 78.47±0.58 99.62±0.05 67.16±0.80 99.69±0.02 92.80±9.91
HyperFD 99.25±0.01 97.57±0.11 94.39±0.28 97.62±0.02 96.93±0.22 92.82±0.34 97.63±0.05 78.62±0.32 99.64±0.01 68.31±0.49 99.71±0.01 92.95±9.66

(a) AP of searched configuration on HPO space. The higher the better.
Method AFLW ANIME FaceMask FDDB FDDB-360 MAFA Pascal VOC UFDD UMDAA-02 WIDER-360 WIKI Average
Random search 99.07±0.07 97.27±0.19 93.95±0.27 96.85±0.26 96.70±0.18 93.91±0.29 95.58±0.50 76.89±0.60 99.72±0.03 66.17±0.43 99.51±0.06 92.33±10.24
Best on WIDER 99.14±0.00 97.37±0.17 94.36±0.09 96.87±0.08 96.95±0.02 93.65±0.09 95.87±0.00 77.39±0.02 99.70±0.01 66.75±0.13 99.59±0.00 92.51±10.07
Tr-AutoML 99.03±0.13 97.38±0.21 93.89±0.42 96.71±0.29 96.80±0.11 93.95±0.45 95.15±0.76 76.67±0.66 99.71±0.04 66.35±0.30 99.45±0.11 92.28±10.22
HyperSTAR 99.06±0.09 97.31±0.18 93.99±0.17 96.85±0.25 96.71±0.12 93.84±0.34 95.65±0.54 76.84±0.63 99.71±0.03 66.02±0.39 99.50±0.04 92.32±10.29
SCoT 99.07±0.06 97.26±0.16 93.93±0.26 96.80±0.27 96.71±0.22 93.83±0.33 95.53±0.52 76.79±0.62 99.73±0.02 66.18±0.35 99.50±0.06 92.30±10.25
HyperFD (ResNet) 99.13±0.04 97.35±0.13 94.07±0.28 96.90±0.14 96.78±0.12 93.91±0.33 95.79±0.38 77.39±0.24 99.73±0.04 66.54±0.21 99.57±0.03 92.47±10.11
HyperFD (stats) 99.14±0.05 97.33±0.18 93.94±0.15 96.93±0.20 96.75±0.15 94.03±0.30 95.73±0.47 77.41±0.35 99.73±0.03 66.63±0.19 99.57±0.03 92.47±10.09
HyperFD (MSE) 99.07±0.07 97.21±0.19 93.79±0.19 97.10±0.30 96.67±0.11 93.99±0.22 95.38±0.59 77.13±0.36 99.73±0.03 66.18±0.34 99.57±0.03 92.35±10.21
HyperFD 99.16±0.05 97.40±0.07 93.89±0.25 97.05±0.15 96.90±0.11 94.13±0.05 95.92±0.12 77.61±0.07 99.72±0.03 66.64±0.05 99.58±0.02 92.55±10.08

(b) AP of searched configuration on NAS space. The higher the better.
Method AFLW ANIME FaceMask FDDB FDDB-360 MAFA Pascal VOC UFDD UMDAA-02 WIDER-360 WIKI Average
Random search 20.09±16.21 20.09±16.22 20.09±16.22 20.09±16.22 20.09±16.22 20.09±16.21 20.09±16.22 20.09±16.22 20.09±16.22 20.10±16.21 20.09±16.22 20.09±16.21
Best on WIDER 41.40±0.00 19.91±0.00 31.94±0.00 47.22±0.00 2.78±0.00 12.68±0.00 30.09±0.00 25.46±0.00 30.09±0.00 0.48±0.00 34.26±0.00 25.12±0.00
Tr-AutoML 23.90±17.57 19.87±17.47 13.35±11.52 24.32±19.19 27.39±20.26 10.58±9.94 26.03±22.64 17.81±12.23 31.48±22.02 29.49±24.19 19.76±15.84 22.18±17.53
HyperSTAR 26.49±22.28 17.64±14.24 20.14±16.01 21.34±18.66 21.60±21.23 23.26±14.44 27.18±14.03 12.75±10.95 20.76±15.37 27.76±21.04 23.10±15.07 22.00±16.67
SCoT 16.56±15.89 18.03±15.29 23.77±22.20 24.58±14.01 26.90±19.23 26.34±15.43 19.10±15.88 20.86±16.35 21.94±15.76 16.24±11.10 14.84±11.29 20.83±15.68
HyperFD (ResNet) 10.75±12.58 10.09±9.67 14.23±10.39 11.74±9.95 26.41±19.02 30.91±19.29 12.72±14.73 15.23±12.01 20.22±12.78 30.78±15.75 8.41±10.46 17.41±13.33
HyperFD (Statistics) 10.37±9.27 16.00±14.12 18.08±13.88 10.42±9.89 27.22±15.80 24.53±12.56 11.81±5.32 13.26±11.94 21.67±16.47 28.55±17.73 11.62±10.50 17.59±12.50
HyperFD (MSE) 16.60±11.28 35.40±23.94 17.56±15.89 20.19±18.65 22.65±14.64 17.15±14.33 21.37±11.39 18.48±17.16 25.04±18.04 20.18±12.14 15.56±7.39 20.93±14.99
HyperFD 4.48±0.75 18.20±7.70 16.19±8.62 3.83±1.83 25.75±19.55 25.36±12.19 8.32±2.23 15.35±6.09 12.94±5.15 4.66±4.09 9.63±4.37 13.16±6.60

(c) Rank (normalized) of searched configuration on HPO space. The lower the better.
Method AFLW ANIME FaceMask FDDB FDDB-360 MAFA Pascal VOC UFDD UMDAA-02 WIDER-360 WIKI Average
Random search 20.10±16.21 20.10±16.21 20.10±16.21 20.10±16.21 20.10±16.21 20.10±16.21 20.10±16.21 20.10±16.21 20.10±16.21 20.10±16.20 20.10±16.20 20.10±16.21
Best on WIDER 6.00±0.00 11.04±7.09 2.81±1.27 15.14±3.53 2.62±0.96 34.91±6.15 7.54±0.00 4.51±0.08 30.50±4.69 2.64±2.24 3.01±0.30 10.97±2.39
Tr-AutoML 30.46±29.48 16.94±17.09 26.73±26.91 27.82±21.15 8.54±7.09 21.39±24.41 32.22±27.95 30.82±22.48 34.46±21.25 13.47±9.68 35.34±29.03 25.29±21.50
HyperSTAR 23.70±21.27 17.20±14.12 15.05±10.76 19.67±15.01 18.15±11.33 24.55±18.37 18.02±17.67 21.91±17.90 26.15±14.62 25.78±14.72 21.83±12.33 21.09±15.28
SCoT 20.08±13.80 20.12±12.34 20.52±16.06 23.53±16.45 21.12±18.48 25.43±17.77 21.21±18.01 22.69±18.24 15.60±8.85 19.02±13.15 25.03±19.44 21.30±15.69
HyperFD (ResNet) 9.03±6.82 11.44±6.42 14.34±10.72 13.97±6.63 11.75±8.00 21.61±16.19 13.10±10.08 5.94±5.18 17.31±15.18 7.26±6.16 5.90±6.08 11.97±8.86
HyperFD (Statistics) 8.03±6.10 13.45±15.37 17.42±9.92 14.20±10.38 14.82±11.45 15.10±14.21 15.85±12.39 6.96±4.78 15.43±14.29 4.82±4.82 6.52±6.74 12.06±10.04
HyperFD (MSE) 22.07±19.74 26.07±19.50 29.64±15.64 8.93±7.67 21.07±11.73 15.08±10.85 26.63±21.48 12.42±8.73 15.79±12.35 18.69±12.56 5.37±6.05 18.34±13.30
HyperFD 5.04±3.32 6.73±1.73 23.15±12.00 7.51±6.50 4.86±4.19 5.42±0.69 6.83±1.74 3.03±0.54 16.70±11.03 2.91±0.49 3.46±4.03 7.78±4.21

(d) Rank (normalized) of searched configuration on NAS space. The lower the better.

Table 7. Performance of HyperFD per dataset, along with standard deviation.

those insights will inspire future research work of transfer-
able AutoML.

Performance distribution and sensitivity to search
space. We check the detection performance (AP@50), as
shown in Figure 2. The hardest dataset is “WIDER-360”, on
which the best AP is less than 70%. UMDAA-02 turns out
to be the easiest dataset of all, on which the majority of con-
figurations are above 99.2%. The overall performance of
HPO space is generally higher than NAS space, but MAFA
and UMDAA-02 are two exceptions, where NAS is more
useful than HPO.

The datasets that are most sensitive to hyper-parameter
tuning are WIDER-360 and UFDD, where the gap be-
tween the best hyper-parameter and the worst differ by as
much as 10%. while performances on UMDAA-02, WIKI
and AFLW are very close, with less than 2% min-max-
difference. For neural architecture search, the best and
worst are closer in general, indicating that the final perfor-
mance is less sensitive to changes in architectures alone.

To combine the advantages from both HPO and NAS

space, one approach is do a joint search of hyper-parameters
and neural architectures. However, this poses new chal-
lenges, both to search space design and search algorithms.
There have been a few recent works that are jointly optimiz-
ing hyper-parameters and architectures [6,10], but this prob-
lem remains challenging and open, even outside the context
of transferable AutoML.

Validation-test correlation. For each dataset, we show
the correlation between rankings on validation set versus
rankings based on test set, i.e., whether the better configu-
ration found with validation dataset still performs better on
a unseen test dataset. The results are shown in Figure 3. If
the correlation is low, it means that a model that performs
better on validation set does not necessarily performs better
on the test dataset. This could be caused by the gap between
distributions of validation and test set, and indistinguisha-
bility between configurations. Datasets suffering from such
problem is ANIME and FaceMask, and NAS space is gener-
ally worse than HPO space. However, most of the numbers
(especially on HPO space) are still higher than 0.8, indicat-



Figure 2. AP distribution on 12 datasets. The bars count for how many configurations we have sampled lie in a specific AP range.

Figure 3. Correlations of configuration rankings on validation
dataset and test dataset.

ing that the trained model is still likely to perform well on a
real-world unseen dataset.

Configuration ranking correlation. We examine the
correlation between the ranking of configurations on differ-
ent datasets, and check whether different datasets have sim-
ilar favors to some configurations. The results are shown
in Figure 4. There are two interesting findings. (i) The
heatmap on HPO and NAS space have a very different out-
look, which means there is no transferability without a well-
defined search space. For example, AFLW and WIKI have
a high correlation on HPO space, but low on NAS. We hy-
pothesis that the common characteristics that enables the
transfer on HPO space does not apply well to architecture
search. (ii) The overall correlations are higher for NAS
space, indicating that datasets have more similar prefer-
ences for architectures. The correlations between WIDER-
Face and WIDER-360 are especially high, which explains
why “Best on WIDER” outperforms all other methods in
Table 7.

Best hyper-parameter/architecture visualization. We
show the best hyper-parameter found on our search space
in Table 8, and the best architecture found in Figure 5. As

Figure 4. Mutual pearson correlation between hyperparameters
on different datasets. The darker color indicates two datasets
share more similar preferences for hyper-parameters / architec-
tures. (top): HPO space. (bottom): NAS space.

illustrated, we observe no clear similarities among the best
hyper-parameters or architectures, suggesting the need of
tailored hparam/arch for each dataset.



(a) AFLW (b) ANIME

(c) FaceMask (d) FDDB-360

(e) FDDB (f) MAFA

(g) Pascal VOC (h) UFDD

(i) UMDAA-02 (j) WIDER-Face

(k) WIDER-360 (l) WIKI

Figure 5. Best neural architecture (backbone) on each dataset.

Dataset Best hyper-parameter
AFLW crop:0.55 iou:0.5 locw:8.0 negp:2.0 lr:3e-04 sgd
ANIME crop:0.55 iou:0.4 locw:2.0 negp:2.0 lr:1e-03 adam
FaceMask crop:0.3 iou:0.4 locw:2.0 negp:7.0 lr:3e-04 adam
FDDB crop:0.55 iou:0.5 locw:8.0 negp:2.0 lr:3e-04 sgd
FDDB-360 crop:0.55 iou:0.5 locw:8.0 negp:7.0 lr:1e-03 adam
MAFA crop:0.55 iou:0.5 locw:2.0 negp:2.0 lr:3e-04 adam
Pascal VOC crop:0.3 iou:0.4 locw:8.0 negp:2.0 lr:3e-04 adam
UFDD crop:0.3 iou:0.4 locw:2.0 negp:2.0 lr:3e-03 sgd
UMDAA-02 crop:0.55 iou:0.5 locw:4.0 negp:7.0 lr:1e-03 sgd
WIDER-Face crop:0.3 iou:0.6 locw:2.0 negp:7.0 lr:3e-03 sgd
WIDER-360 crop:0.55 iou:0.6 locw:2.0 negp:7.0 lr:3e-03 sgd‘
WIKI crop:0.55 iou:0.4 locw:4.0 negp:2.0 lr:1e-03 sgd

Table 8. Best hyper-parameter searched on each dataset.

References
[1] Emad Barsoum, Cha Zhang, Cristian Canton Ferrer, and

Zhengyou Zhang. Training deep networks for facial expres-
sion recognition with crowd-sourced label distribution. In

Proceedings of the 18th ACM International Conference on
Multimodal Interaction, pages 279–283, 2016. 2

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay
Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In International Conference on
Machine Learning, pages 550–559. PMLR, 2018. 3

[3] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In In-
ternational Conference on Learning Representations, 2018.
2

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, pages 213–229. Springer, 2020.
2

[5] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tian-
heng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,



Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang,
Chen Change Loy, and Dahua Lin. Mmdetection: Open mm-
lab detection toolbox and benchmark, 2019. 1

[6] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zi-
jian He, Zhen Wei, Kan Chen, Yuandong Tian, Matthew
Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe
search using neural acquisition function. arXiv e-prints,
pages arXiv–2006, 2020. 4

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[8] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4690–4699, 2019. 2

[9] Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kot-
sia, and Stefanos Zafeiriou. Retinaface: Single-stage dense
face localisation in the wild, 2019. 1, 2

[10] Xuanyi Dong, Mingxing Tan, Adams Wei Yu, Daiyi Peng,
Bogdan Gabrys, and Quoc V Le. Autohas: Differentiable
hyper-parameter and architecture search. arXiv e-prints,
pages arXiv–2006, 2020. 4

[11] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.
Williams, J. Winn, and A. Zisserman. The pascal visual ob-
ject classes challenge: A retrospective. International Journal
of Computer Vision, 111(1):98–136, Jan. 2015. 1, 2

[12] Jiemin Fang, Yuzhu Sun, Kangjian Peng, Qian Zhang, Yuan
Li, Wenyu Liu, and Xinggang Wang. Fast neural network
adaptation via parameter remapping and architecture search.
In International Conference on Learning Representations,
2019. 2

[13] Jianglin Fu, Saeed Ranjbar Alvar, Ivan V. Bajic, and Rod-
ney G. Vaughan. Fddb-360: Face detection in 360-degree
fisheye images, 2019. 1, 2
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