A Unified Query-based Paradigm for Point Cloud Understanding

Supplementary Material

1. Contextual Relative Positional Encoding

In this section, we elaborate the computation process of
relative positional encoding Bqx € R"*™ in the attention
weights and B, € R™*"*4 in the value vectors.

The relative positional encoding B((;lz) between the ¢-th
target and the j-th source is computed as:

BS) = (FYWo)(BS))T + (FY W) (BI)T. (1)

Byg, By and By, are all positional embeddings in R™*"*4
obtained by the relative positional difference between tar-
gets Y and sources X. These three embeddings share the
same computation procedure. Therefore, we use B to de-
note all of them to show how they are constructed.

Before introducing the computation of relative positional
embedding B, we first define three learnable embedding ta-
bles, B, € RT=*5), B, € RTv*l5) and E, € RT-*15],
for transferring the positional difference in a certain axis to a
high-dimensional embedding. T’;, T}, and T, are the lengths
of the tables, which relate to the maximum ranges of the 3D
scene in z-, - and z-axis, respectively. We use R, R, and
R, to denote the maximum ranges in the three axes. The
computation of T}, from Ry, in which k € {x,y, z}, is for-
mulated as:
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where ¢ is a pre-defined value for quantification. We double
R}, here since the relative positional difference between any
two points within the 3D scene along k-axis is in the range
of [—Rk, Rk]

Then, we compute the relative positional embeddings for
concrete targets Y and sources X. We compute and quan-
tify their relative Euclidean positional difference to obtain
a difference matrix D, € R™*" (k € {z,y, z}) for each
axis. For example, given the i-th target Y (V) and the j-th

source X U ), D,(jj ) is computed as:

Ja ke {Jf,y,Z}, (3)

plii) _ X =y + Ry
(= | Z—
where X € R™ and Y, € R™ represent the k-axis coor-

dinates of source and target positions. We add Ry to the
coordinate difference to ensure that the difference values
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Figure 1. Illustration of the contextual relative positional encod-
ing.

in Dy, are in the range of [0,T}]. We finally construct the
high-dimensional relative positional encoding matrix B by
looking up embeddings from the three tables based on Dy,
(k € {x,y, z}) and concatenating the results:

B = [EP), EPY), B “

We also illustrate this computation process in Figure 1.
Note that we keep different learnable tables E), (k €
{z,y, z}) for q, k and v.

To avoid saving the large relative positional embedding
matrix B € R™*"*4_ we re-implement the attention layer
with a series of CUDA kernel functions which directly re-
turns the attention results without storing large intermediate
tensors.

2. Implementation Detail
2.1. Semantic Segmentation

For semantic segmentation, we adopt the encoder net-
work of the voxel-based sparse U-Net [, 4] as our embed-
ding stage network to extract support features. The sparse
U-Net is a strong baseline network in point cloud seman-
tic segmentation, where each level of the encoder consists
of a strided sparse convolution layer to downsample the in-
put scenes and several residual blocks. A residual block
is composed of two submanifold sparse convolutions and a
residual addition with the input features to the block. Our
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Figure 2. The architecture of EQ-Net for point cloud semantic
segmentation.
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Figure 3. The architecture of EQ-PointNet++ used in indoor object
detectors.

Q-Net then makes use of the multi-level features to pro-
duce Q-representation for query positions. To be specific,
in each level, the Q-Net consists of three Q-Blocks. The
K for the local attention is set to 32. The maximum range
of a 3D scene is set to 20m. For the relative positional en-
coding, the quantification value ¢ is set to 0.005. Figure 2
shows the detailed structure of our EQ-Net for point cloud
semantic segmentation, where the sparse convolution layers
and residual blocks are denoted as “SparseConv” and “Res-
Block”, respectively.

For both ScanNetV2 and S3DIS, we train our EQ-Net
with the AdamW optimizer and adjust the learning rate fol-
lowing the OneCycle [8] policy, where the maximum and
initial learning rates are set to le-3 and le-5, respectively.

The weight decay is set to 0.1. We train for 600 epochs for
ScanNetV2 and 1,500 epochs for S3DIS with a batch size
of 8. The augmentations for the input point cloud include
random flip, random rotation, random jittering and elastic,
following [4]. For voxelizing the point cloud in the embed-
ding stage, we set the voxel size to 2cm.

2.2. Indoor Object Detection

We base our implementation on the MMDetection3D
codebase [2] with a version of 0.17.0. For ScanNetV2, we
train our EQ-Paradigm VoteNet and GroupFree by AdamW
optimizer for totally 80 epochs with an initial learning rate
of 0.006 and 0.003, respectively. The training batch size
is 16, and the learning rate is decayed at the 56th and the
68th epochs with a rate of 0.1. We set the weight decay
for training VoteNet and GroupFree to 0.01 and 0.0005, re-
spectively. For SUN RGB-D, we train our method for 48
epochs with an initial learning rate and a weight decay of
0.001 and 0.1, respectively. The learning rate is decayed at
the 36th and the 42th epochs with a rate of 0.1. For all mod-
els, we apply random rotation and random flip as our data
augmentation strategies.

Each Q-Net consists of three Q-Blocks for updating
query and support features. For each Q-Block, we set the
K in the local attention module to 64, the maximum range
of the 3D scenes to 10m for all three axes, and the quan-
tification value ¢ for relative positional encoding to 0.01.
The specific architecture of EQ-PointNet++ in VoteNet and
GroupFree is illustrated in Figure 3, where the set abstrac-
tion layers with a single-scale grouping setting is described
as “SA Layer (SSG)”.

2.3. Outdoor Object Detection

We base our implementation on the OpenPCDet code-
base [9] with a version of 0.3.0. All networks are trained
with the same schedule as their baselines provided by the
official OpenPCDet team. The Q-Net for outdoor detectors
consists of three Q-Blocks. For each Q-Block, we set the
K to 128, the maximum ranges to 70.4m, 80m and 4m for
X, y and z axis, respectively, and the quantification value ¢
to 0.1. Ground-truth sampling, random scaling and random
rotation are utilized as data augmentation strategies.

EQ-SECOND SECOND is a voxel-based detector deal-
ing with voxelized point cloud. In the encoder, It applies
a SparseConvNet composed of some SparseConvBlocks to
extract sparse voxel features. Each SparseConvBlock con-
sists of a strided sparse convolution layer (SparseConv) and
two submanifold sparse convolution layers (Subm.Conv) to
downsample the input scene and extract high-level features.
In the decoder, it utilizes a MapToBEV module to convert
the sparse voxel features to the BEV image representation
by merging voxel features with different heights. Then, a



SparseConvNet (Voxel-based Backbone)
@ N
z
4
Q
5
[¥] 4
2 = SparseConv: SparseConv: SparseConv:
= < stride=2. stride=2 stride=2
2 8 kernel_size=3 kernel_size=3 kernel_size=3 ©
o] 2 3 c_in=16 & cin=32 3 ¢ in=64 5]
2 ~ x c_out=32 x c_out=64 x c_out=64 %
2 o & | Subm. Convx2: & | Subm. Convx2: & | Subm. Convx2: -
= | g kemel_size=3 kemel_size=3 kemel_size=3 =
ES g ¢ in-{32]x 2 c_in=[64] X 2 c_in=[64] X 2
2|3 c_out=[32] x 2 ©_out={64] X 2 ¢ out={64, 12
&)
>
Conv/LN:
c=[192]
Fging x 192
Sing X3
BEV map
:35200 x 3 Q-Net
Conv/BN/ReLU:
c=[192]
Fq:35200x192
¥
Detection Head c=(192, 192, 192, 192]
Cls. Reg.

Figure 4. The architecture of EQ-SECOND.
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Figure 5. The architecture of EQ-PointNet++ for EQ-PointRCNN.

2D CNN is followed to propagate non-empty pixel features
to empty pixels within the BEV map. An SSD head is fi-
nally applied on the dense BEV features to perform 3D ob-
ject detection.

EQ-SECOND keeps the SparseConvNet as its embed-
ding stage network, but utilizes a Q-Net to extract dense
BEV feature maps. The Q-Net treats positions and features
of non-empty voxels in the last embedding layer as support
points and support features, respectively, and takes coordi-
nates of all pixels within the final BEV map as query posi-
tions. Since the resolution of the final BEV map is 200x 176
in SECOND, the number of query positions is 35200. After
the querying stage, the dense BEV features are sent to the
SSD head for prediction. The architecture of EQ-SECOND
is illustrated in Figure 4.
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Figure 6. The concrete architecture of EQ-PVRCNN?,
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Figure 7. The architecture of EQ-PVRCNNT.

EQ-PointRCNN PointRCNN is a point-based detector,
which utilizes PointNet++ to extract sparse point features
followed by a specifically designed point-based detection
head. The head deploys a bottom-up proposal generation
module and a canonical bounding box refinement mod-
ule to generate predictions. EQ-PointRCNN keeps the
head of PointRCNN and applies the EQ-PointNet++ as its
point feature extraction network. The architecture of EQ-
PointNet++ in EQ-PointRCNN is illustrated in Figure 5,
where the set abstraction layers with a multi-scale group-
ing setting is described as “SA Layer (MSG)”.

EQ-PVRCNN PVRCNN is the state-of-the-art outdoor
detector. It applies SECOND to generate high-quality pro-
posals, followed by a decoder utilizing the voxel-set ab-
straction modules to extract keypoint features. Finally, a
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Figure 8. The architecture of EQ-PointNet++ for shape classifica-
tion.

head including a predicted keypoint weighting module and
a Rol-grid pooling module to convert keypoint features to
proposal grid features is adopted for proposal refinement.
In this paper, we propose two types of EQ-PVRCNN: EQ-
PVRCNN? and EQ-PVRCNNT.

EQ-PVRCNNS? follows the original design of PVRCNN.
After obtaining proposals from SECOND, it deploys hier-
archical Q-Net as the querying stage network treating key-
points as query positions to extract keypoint features, fol-
lowed by the original PVRCNN head to convert keypoint
features to proposal grid features for detection. The archi-
tecture of EQ-PVRCNNS is illustrated in Figure 6.

In EQ-PVRCNNT, we directly set the proposal grid
points as query positions, obtain their features, and apply
a simple head composed of a classification layer and a re-
gression layer to generate final predictions. EQ-PVRCNN'
is a concise design getting rid of the complicated modules in
PVRCNN head (e.g., voxel-set abstraction, predicted key-
point weighting and Rol-grid Pooling) and also achieves
impressive “AP” results. In EQ-PVRCNNT, 100 propos-
als are kept after SECOND and each proposal is equally
divided into 6 x 6 x 6 grid points. Therefore, the number of
query positions of EQ-PVRCNNT is 21600. The architec-
ture of EQ-PVRCNNT is illustrated in Figure 7.

No. of Q-Blocks L | Car (%) | Pedestrian (%) | Cyclist (%)
1 78.86 48.13 63.24
2 80.94 50.13 65.11
3 81.49 53.64 67.13
6 83.10 52.35 66.81

Table 1. AP comparison on class “Car” for applying different
numbers of Q-Blocks in EQ-SECOND.

No. of Q-Blocks L 1 2 3 4
mloU (%) 735 746 753 75.1

Table 2. Semantic segmentation results of our EQ-Net with differ-
ent numbers of Q-Blocks on ScanNetV?2 validation set.

Pos. Enc. | no pos. | abs. pos. | bias RPE | cont. RPE
AP (%) 0.01 80.14 81.03 81.49

Table 3. AP comparison on class “Car” for applying different po-
sitional encoding methods in EQ-SECOND. “no pos.”: no posi-
tional encoding; “abs. pos.”: absolute positional encoding fol-
lowing [6, 7]; “bias RPE”: bias-mode relative positional encoding
in [10]; “cont. RPE”: contextual relative positional encoding.

2.4. Shape Classification

We base our implementation on pytorch-version Point-
Net++ codebase [11]. We train our EQ-PointNet++ with
an initial learning rate of 0.001 by Adam optimizer for to-
tally 200 epochs. The batch size is 24 and the learning rate
is decayed at each 20 epochs with a rate of 0.7. Random
scaling and random translation are applied as our data aug-
mentation strategies. We apply hierarchical Q-Net to extract
multi-level query features. Each Q-Net consists of three Q-
Blocks. For each Q-Block, we set the K to 32, the maxi-
mum range to 5m for all three axes, and the quantification
value ¢ to 0.005. The architecture of EQ-PointNet++ for
shape classification is illustrated in Figure 8.

3. More Ablation Studies

All ablation studies are conducted on EQ-SECOND,
EQ-VoteNet and EQ-Net for outdoor object detection, in-
door object detection and semantic segmentation, respec-
tively. EQ-SECOND is evaluated on the KITTI dataset with
“AP” calculated on instances labeled as “Moderate” diffi-
culty; EQ-VoteNet is evaluated on the ScanNetV2 dataset
with mAP@0.5; EQ-Net is tested on the ScanNetV2 dataset
with mloU.

Analysis on the Number of Q-Blocks In Table | and Ta-
ble 2, we list the performance of EQ-SECOND and EQ-
Net with different number L of Q-Blocks for detection
and segmentation, respectively. As illustrated in Table 1,
for object detection, more Q-Blocks bring a consistent im-
provement on the performance of large objects (“Car”).



K | EQ-SECOND (%) | EQ-VoteNet (%) | EQ-Net (%)
16 78.11 41.9 74.5

32 81.09 43.5 75.3

64 81.45 45.4 75.2
128 81.49 44.6 -
256 81.46 -
GA 81.48

Table 4. Performance comparison of different methods with vari-
ous K in local attention. “GA” means using global attention.

This sustained improvement comes from our design of up-
dating support features and query features simultaneously
in each Q-Block. With more Q-Blocks, the support fea-
tures can embed more long-range semantic information and
bring more meaningful guidance for query feature refine-
ment. However, more global information cannot continu-
ously benefit detecting small objects (“Pedestrian” and “Cy-
clist”), which may introduce excessive noise and thus is
harmful to small object detection. As illustrated in Table
1, compared to utilizing three Q-Blocks, the “AP” of using
six Q-Blocks improves a lot on class “Car” but is lower on
class “Pedestrian” and “Cyclist”. For semantic segmenta-
tion, we also observe in Table 2 that increasing the number
of Q-blocks brings mloU improvement but the performance
growth stops when the number of blocks is larger than three.
Based on both Table 1 and Table 2, we finally uniformly
adopt three Q-Blocks in the Q-Net of all models.

Analysis on the Relative Positional Encoding Positional
encoding plays a fundamental role in our Q-Net. Espe-
cially in the first block, it is the primary hint to extract
features for query positions. In Table 3, we compare EQ-
SECOND models with different positional encoding meth-
ods. As illustrated in the table, without positional encoding,
the model cannot converge, leading to inferior AP results.
Meanwhile, applying contextual relative positional encod-
ing yields the best performance. This demonstrates that cor-
relating the relative position with q, k and v features in an
attention layer benefits the modeling of different responses
for points in objects with various scales and shapes, thus
enabling more effective query feature generation.

Analysis on the K of Local Attention For each Q-Block,
we apply local attention instead of global attention to reduce
the GPU memory cost of attention weight 4. In Table 4,
we show the performance of different methods with vari-
ous K in their local attention mechanism. Meanwhile, we
also show the performance of EQ-SECOND with global at-
tention. Since the numbers of query positions and support
points in EQ-SECOND (i.e., 30k and 10k) are large, dur-
ing the training and testing of the global attention model,
we randomly choose 2k query positions in each iteration to
produce losses or predictions. As illustrated, applying lo-

cal attention achieves comparable performance with global
attention yet with much less GPU memory cost.

4. More Quantitative Results

In this section, we provide class-wise quantitative results
on semantic segmentation and indoor object detection. For
point cloud semantic segmentation, the evaluation metrics
include mean Intersection-over-Union (mloU), mean Accu-
racy (mAcc) and Overall Accuracy (OA). In Table 5, we
show the detailed segmentation results on S3DIS dataset
with two different evaluation modes, Area 5 and 6-fold
cross validation. In Table 6, we show the class-wise IoU for
semantic segmentation on ScanNetV?2 validation and test
sets. In Table 7 and Table 8, we show the AP results of dif-
ferent methods with EQ-PointNet++ on ScanNetV?2 dataset
with IoU threshold of 0.25 and 0.5, respectively. In Table 9,
we show the AP@0.25 and AP@0.5 of VoteNet with EQ-
PointNet++ on SUN RGB-D dataset.

5. Limitation

Through EQ-Paradigm, we can easily combine different
backbones and heads, which provides great flexibility in 3D
model design. However, the choice of embedding stage net-
work is still highly-dependent on the application scenarios.
For example, due to the diverse scopes and point distribu-
tions on indoor and outdoor scenes, the networks designed
for indoor scenario usually have smaller receptive radius
to focus on object details, while the outdoor networks em-
phasize more on the object relations. Hence, the network
specifically designed for indoor scenes usually performs
bad on outdoor point cloud. To deploy a EQ-Paradigm
model on a particular application scenario, we need to care-
fully choose a practical embedding stage network for ex-
tracting support features. To enable a universal structure for
all the 3D scenes, like the ResNet [5] and ViT [3] in 2D,
more exploration on the embedding stage network design is
needed.



Method [Mode [ceil. floor wall beam col. wind. door chair table book. sofa board clut. [ mloU mAcc OA

Sparse EQ-Net Area5 | 934 982 863 0.0 387 658 66.1 921 8.1 778 764 836 615| 713 712 91.1
P 6-fold | 947 975 86.1 71.7 584 734 76,7 823 764 715 751 757 617 | 715 86.1 914

Table 5. Semantic segmentation results of our EQ-Net on S3DIS under different evaluation modes, i.e., Area 5 and 6-fold cross validation.
We show class-wise IoU (%) and mloU (%), together with mAcc(%) and OA(%).
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Table 6. Semantic segmentation results of our EQ-Net on ScanNetV?2 validation and test sets. We show class-wise loU (%) and mloU (%).
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GroupFree | 51.2 873 920 881 688 61.8 515 505 169 643 79.7 633 566 79.0 996 61.6 939 569 | 68.0

Table 7. Performance of different methods with EQ-PointNet++ on ScanNetV2 dataset. Evaluation metric is AP with 0.25 IoU threshold,
AP@0.25 (%).
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VoteNet 20.1 77.0 77.0 737 526 319 189 378 74 202 365 284 470 40.6 86.8 414 899 303 | 454
GroupFree | 21.6 815 79.2 705 569 367 248 441 84 344 555 46.1 392 460 929 398 87.0 354 | 50.0

Table 8. Performance of different methods with EQ-PointNet++ on ScanNetV2 dataset. Evaluation metric is AP with 0.5 IoU threshold,
AP@0.5 (%).

Method | Metric | bed table sofa  chair toilet desk  dresser  nightstand  bookshelf  bathtub | mAP
VoteNet AP@0.25 86.3 49.0 68.0 76.8 88.3 28.0 35.6 64.2 29.8 78.8 60.5
VoteNet AP@0.5 58.8 21.4 51.7 56.7 61.4 7.4 21.8 44.8 9.2 51.7 38.5

Table 9. Performance of VoteNet with EQ-PointNet++ on SUN RGB-D dataset under different evaluation metrics, AP@0.25 (%) and
AP@0.5 (%).
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