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A. Motivation of Using 3D LUT
Inspired by the practice in the image signal processor

(ISP) [5], we adopt the 3D LUT instead of a more general
mapping function (e.g., a multi-layer perceptron (MLP)) to
model the R3 → R3 color transform function due to the
consideration of efficiency and expressiveness. Specifically,
if a static MLP is used, it is easy to learn an over smooth
transform since the network needs to adapt to all images
in the dataset. Therefore, the model might suffer from its
limited expressiveness and diversity among images. Adopt-
ing an additional network for predicting the parameters of
an MLP to enable image-adaptiveness is another alternative
and has been investigated in CSRNet [3]. However, since an
MLP requires a cascade of several linear and nonlinear sub-
operations to increase the model capability, it suffers from a
higher computational burden, especially on high-resolution
inputs, as shown in Table 2 in the paper (48 times over
our AdaInt on 4K resolution). Instead, our 3D LUT with
learned adaptive intervals is able to achieve enhanced ex-
pressiveness and image-adaptiveness while still presenting
high efficiency by directly recording and retrieving a com-
plex transform via simple lookup and interpolation opera-
tions.

B. Details of AiLUT-Transform
B.1. Forward

Given an input image denoted as X ∈ [0, 1]3×H×W ,
suppose an image-adaptive 3D LUT is learned, its output
values and sampling coordinates are abbreviated as T ∈
[0, 1]3×Ns×Ns×Ns and P̂ ∈ [0, 1]3×Ns , respectively. Ns

is the number of sampling coordinates along each lattice di-
mension. The AiLUT-Transform takes all of X , T , and P̂
as inputs, and produces the transformed output image Ŷ :

Ŷ = AiLUT-Transform(X,T, P̂ ). (1)
*Equal Contribution †Corresponding Author
Work partially done during an internship of C. Yang at Alibaba Group.

The transform consists of a lookup step and an interpolation
step. The former locates each input pixel of X in the LUT,
whereas the latter computes the corresponding output using
the values of eight nearest neighborhood sampling points in
T . Suppose an input query pixel x is given, which is com-
posed of three color components {xr, xg, xb}, the transform
on x is performed in the following steps.

The Lookup Step The transform first locates the query
pixel x into a lattice cell closed by 8 nearest neighborhood
sampling points. These 8 points (or called vertices) are de-
termined by 6 coordinates obtained by finding both the left
and right neighbors x0

c , x
1
c ∈ P̂ (c = r, g, b) along each lat-

tice dimension, and their corresponding indices in the LUT
e0c , e

1
c ∈ INs−1

0 . In a standard LUT transform where the 3D
lattice is constructed with equal intervals ∆ = 1/(Ns − 1),
this can be easily achieved:

e0c = ⌊xc

∆
⌋, e1c = e0c + 1,

x0
c = e0c∆, x1

c = e1c∆,

where ⌊·⌋ is the floor function. It is obvious that the P̂
is not needed in the standard LUT transform, so it is al-
ways omitted in existing implementations. However, in
AiLUT-Transform, since the intervals are no longer a con-
stant value, a searching algorithm on P̂ is required to find
x0
c , x

1
c and e0c , e

1
c , which can be formulated as:

x0
c , e

0
c = max{P̂c,s, s|P̂c,s ≤ xc, s ∈ INs−1

0 },
x1
c , e

1
c = min{P̂c,s, s|P̂c,s > xc, s ∈ INs−1

0 }.
(2)

Thanks to the bounded and monotone increasing properties
of the learned sampling coordinates stored in P̂ (see Section
3.2 in the paper), Equation (2) can be easily achieved by
introducing a binary search.

Once the 6 indices (e0r, e
1
r; e

0
g, e

1
g; e

0
b , e

1
b) for the nearest

neighborhood vertices in the LUT are determined, the cor-
responding output color values of the 8 neighbors in T can
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be defined as:

T̃:,i,j,k = T [:, eir, e
j
g, e

k
b ], i, j, k ∈ {0, 1}. (3)

The Interpolation Step After querying 8 adjacent ver-
tices in the LUT for query pixel x, the transformed result
can be obtained by applying trilinear interpolation, includ-
ing the following steps:

• Compute the normalized offsets between the input
color and the 8 neighbors:

xd
r =

xr − x0
r

x1
r − x0

r

, xd
g =

xg − x0
g

x1
g − x0

g

, xd
b =

xb − x0
b

x1
b − x0

b

. (4)

• Compute the interpolation weights, which are defined
as the partial volume diagonally opposite the vertices:

Vi,j,k =(xd
r)

i(1− xd
r)

1−i

· (xd
g)

j(1− xd
g)

1−j

· (xd
b)

k(1− xd
b)

1−k.

(5)

• Compute the linear combination of Vi,j,k and T̃:,i,j,k:

ŷ =
∑

i,j,k∈{0,1}

Vi,j,k · T̃:,i,j,k. (6)

B.2. Backpropagation

In our method, both T and P̂ are learned by neural net-
works to enable more flexible 3D LUT with adaption to dif-
ferent image content. The challenge exists in the absence
of interpolation implementation in popular deep learning li-
braries (such as PyTorch [9]) that can provide gradients to
P̂ . To this end, we provide a new implementation that can
compute the gradients with respect to P̂ during backprop-
agation to enable the end-to-end learning of AdaInt. The
core is to define the partial derivatives of x0

c , x
1
c :

∂ŷ

∂x0
c

=
∑

i,j,k∈{0,1}

T̃:,i,j,k
∂Vi,j,k

∂xd
c

∂xd
c

∂x0
c

,

∂ŷ

∂x1
c

=
∑

i,j,k∈{0,1}

T̃:,i,j,k
∂Vi,j,k

∂xd
c

∂xd
c

∂x1
c

.

(7)

where,

∂Vi,j,k

∂xd
r

= (−1)1−i · (xd
g)

j(1− xd
g)

1−j · (xd
b)

k(1− xd
b)

1−k,

∂Vi,j,k

∂xd
g

= (xd
r)

i(1− xd
r)

1−i · (−1)1−j · (xd
b)

k(1− xd
b)

1−k,

∂Vi,j,k

∂xd
b

= (xd
r)

i(1− xd
r)

1−i · (xd
g)

j(1− xd
g)

1−j · (−1)1−k,

(8)

and,

∂xd
r

∂x0
r

= − 1− xd
r

x1
r − x0

r

,
∂xd

r

∂x1
r

= − xd
r

x1
r − x0

r

,

∂xd
g

∂x0
g

= −
1− xd

g

x1
g − x0

g

,
∂xd

g

∂x1
g

= −
xd
g

x1
g − x0

g

,

∂xd
b

∂x0
b

= − 1− xd
b

x1
b − x0

b

,
∂xd

b

∂x1
b

= − xd
b

x1
b − x0

b

.

(9)

Note that since x0
c , x

1
c are elements in P̂ , Equations (7)

to (9) indeed define the partial derivatives with respect to
P̂ , allowing the loss gradients to flow back to the sampling
coordinates, and therefore back to the sampling intervals
and any preceding neural network modules. The AiLUT-
Transform works on each pixel independently, so it is highly
parallelizable, especially on GPUs.

C. Experimental Details

Both datasets used in our work, i.e., the MIT-Adobe
FiveK [1] and PPR10K [7], are publicly released, free of
charge for research use, and contain no personally identifi-
able information. We conducted our experiments based on
PyTorch 1.8.1 [9] and the MMEditing toolbox (v0.11.0, un-
der Apache 2.0 license) 1. The proposed AiLUT-Transform
is complied as a PyTorch CUDA extension using CUDA
10.2. In the following section, we provide more experimen-
tal details about these two datasets.

C.1. FiveK

Datasets Preprocessing Experiments on the FiveK
dataset are conducted on two different resolutions (480p
and 4K) and two different applications (retouching and tone
mapping). For retouching and tone mapping on 480p, we
directly download the dataset released by [11] 2 for model
training and testing. To obtain the original 4K images, we
follow [11] to download the original dataset 3 and use the
Adobe Lightroom software to pre-process the RAW images.
We use the same training/testing splits as [11] to divide the
dataset into 4500 training pairs and 500 testing pairs. For
the sake of research reproducibility, we provide the split
files and the detailed instruction of data pre-processing at
https://github.com/ImCharlesY/AdaInt.

We train all our models on the 480p resolution. During
training, input images (8-bit sRGB for retouching and 16-
bit CIE XYZ for tone mapping) are normalized to [0, 1] for
unified processing and are randomly augmented to mitigate
overfitting and facilitate performance. The augmentations
include random ratio cropping, random horizontal flipping,

1 https : / / github . com / open - mmlab / mmediting
2 https://github.com/HuiZeng/Image-Adaptive-3DLUT
3 https://data.csail.mit.edu/graphics/fivek

2
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Id Layer Output Feature Shape

0 Bilinear Resize 3× 256× 256
1 Conv3x3, LeakyReLU 16× 128× 128
2 InstanceNorm 16× 128× 128
3 Conv3x3, LeakyReLU 32× 64× 64
4 InstanceNorm 32× 64× 64
5 Conv3x3, LeakyReLU 64× 32× 32
6 InstanceNorm 64× 32× 32
7 Conv3x3, LeakyReLU 128× 16× 16
8 InstanceNorm 128× 16× 16
9 Conv3x3, LeakyReLU 128× 8× 8

10 Dropout (0.5) 128× 8× 8
11 AveragePooling 128× 2× 2
12 Reshape 512

Table 1. Network architecture of the backbone module (the map-
ping f in the paper) on the FiveK [1] dataset.

and random color jittering. The trained models can be di-
rectly applied to the original 4K resolution without perfor-
mance drop (see Table 2 in the paper). This protocol signif-
icantly speeds up the training stage and also demonstrates
the flexibility and scalability of our method.

Model Architectures The model architectures employed
on the FiveK experiments are listed in Tables 1 to 3. For
the backbone network (mapping f ), we directly adopt the
5-layer 4 backbone in [11]. The mapping h uses a cascade
of two fully-connected (FC) layers, which reformulates the
implementation in [11], i.e., the first FC layer (mapping
h0) is responsible for predicting M input-dependent fus-
ing weights, whereas the second FC layer (mapping h1)
encodes the parameters of M basis 3D LUT. For the in-
stantiation of mapping g, a single FC layer is adopted. We
follow [11] to initialize the parameters of f and h. As for
the proposed AdaInt module (mapping g), we initialize its
weights and bias to all 0s and 1s, which makes the predicted
sampling intervals start from a uniform state, hence stabiliz-
ing the training of AdaInt.

Training Details We train our models for 400 epochs
with a fixed learning rate of 1 × 10−4 using the standard
Adam optimizer [6]. The mini-batch size is set to 1. To fur-
ther stabilize the AdaInt learning and facilitate the learning
of more output color values in the 3D lattice, we decay the
learning rate of g by a factor of 0.1 and freeze its parameters
in the first 5 training epochs.

C.2. PPR10K

Datasets Preprocessing Experiments on the PPR10K
dataset are conducted on the 360p resolution for the

4 The term ”5-layer” corresponds to 5 convolutional layers.

Id Layer Output Feature Shape

0 FC M
1 FC 3N3

s

2 Reshape 3×Ns ×Ns ×Ns

Table 2. Network architecture of the mapping h in the paper. ”FC”
denotes the fully-connected layer.

Id Layer Output Feature Shape

0 FC 3(Ns − 1)
1 Reshape 3× (Ns − 1)
2 Softmax 3× (Ns − 1)
3 Cumsum 3× (Ns − 1)
4 ZeroPad 3×Ns

Table 3. Network architecture of the mapping g in the paper. ”FC”
denotes the fully-connected layer, and ”Cumsum” is the operation
to conduct cumulative summation.

photo retouching application. The official training/testing
(8, 875 : 2, 286) splits are adopted. During training, im-
ages augmented by the dataset creator are used as our in-
puts. Please refer to [7] for more details. Besides the pre-
augmentations, we further apply some commonly-used data
augmentation methods such as random ratio cropping and
random horizontal flipping. Since the dataset is relatively
larger-scale than the FiveK dataset, images are also resized
into a unified 448×448 resolution to enable mini-batch pro-
cessing for speeding up the training stage.

Model Architectures For experiments on the PPR10K
dataset, the mapping g and h share identical architectures
(Tables 2 and 3) with those on the FiveK dataset. For the
backbone network (the mapping f ), we follow [7] to adopt
the ResNet-18 [4] (with a preceding bilinear layer resizing
images into 224×224 resolution) for a fair comparison. The
initializations of g and h are the same as those in the FiveK
experiments, whereas the ResNet-18 backbone is initialized
using ImageNet [2] pretrained weights.

Training Details We train our models for 200 epochs
with a mini-batch size of 16 to speed up the training stage
on such a large-scale dataset. For other settings, they are
kept consistent with those in the FiveK experiments.

D. More Visualization of AdaInt
To better investigate the behavior of AdaInt, inspired by

[8], we introduce the per-color-channel Accumulative Error
Histogram (AEH), which, to some extent, can indicate loca-
tions in the color ranges where more dense sampling points
are required.

The AEH bins the intensity changes between input and
target images according to the values of the input pixels.
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Figure 1. Qualitative results on noisy images for photo retouching on the FiveK dataset (480p) [11]. Best viewed on screen.

Therefore, it indicates the intensity change required for each
input pixel value to transform the image. Given an input im-
age X ∈ [0, 1]3×H×W and the corresponding groundtruth
image Y ∈ [0, 1]3×H×W , the AEH is constructed by first
calculating the error map D between X and Y :

Dc,h,w = (Xc,h,w − Yc,h,w)
2, (10)

where c = {r, g, b}, h ∈ IH−1
0 , and w ∈ IW−1

0 . Before
computing the histogram, we divide the input color range
[0, 1] for a single channel uniformly into Nbin bins and as-
sign each input pixel into one of them according to its value
at the corresponding color channel:

Ωk
c = {Xc,h,w|k∆ ≤ Xc,h,w < (k + 1)∆}, (11)

where ∆ = 1/Nbin and Ωk
c is the k-th bin (k ∈ INbin−1

0 ) for
channel c. The normalized error histogram Hc for channel
c is then computed as:

Hc[k] =
1

Θc

∑
Xc,h,w∈Ωk

c

Dc,h,w, (12)

where Θc is a normalization term such that
∑

k Hc[k] = 1.
The final per-color-channel AEH can be easily derived by
applying accumulative summation on Hc. In this work, we
set Nbin = 1000. The AEH can be visualized as a 1D curve
as shown in Figure 2. The partial curve exhibiting higher
curvature shows the color range requires a more substantial
intensity change. Though not precise, the AEH indicates

regions in the color range where the non-linearity is most
prominent, and hence more sampling points are required.

We provide more visualization in Figure 2 of the learned
sampling coordinates and the corresponding 3D LUTs for
different images from the PPR10K dataset. It is clearly
shown that the learned sampling coordinates are inclined
to locate densely in the color range where the AEH ex-
hibits high curvature, which suggests that our AdaInt is
able to capture the complexity of the underlying optimal
color transform with the adaption to the image content and
achieve a more optimal sampling point allocation.

E. Additional Qualitative Comparisons
In this section, we provide additional visual comparisons

on the FiveK (4K) dataset in Figure 3 and on the PPR10K
(360p) dataset in Figure 4.

F. Real-time Performance on 8K Images
We also follow the protocol in [11] to resize the images

into 8K (7680×4320) resolution and measure the GPU in-
ference time of both the baseline [11] and our method on
a V100 GPU. The baseline can execute at a speed of 2.36
ms per 8K image, while AdaInt only increases the runtime
to 2.54 ms, which still exceeds the requirement of real-time
processing by a large margin. Note that the high efficiency
of our method mainly owns to the characteristic that the
computational cost of the CNN network is fixed as it op-
erates on a downsampled, fixed-resolution version of the
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input, and the proposed AiLUT-Transform can be highly
parallelized via customized CUDA code.

G. Limitation
As discussed in Section 5 in the paper, the proposed

method is based on pixel-wise mapping and thus may fail to
tackle heavy noise existing in the input. For verification, we
randomly select three images from the FiveK dataset [1] and
add Gaussian noise (with a standard deviation of σ = 0.02)
to them. As shown in Figure 1, both the baseline [11] and
our method could not eliminate the added noise due to the
lack of filtering capability. Constructing pixel-wise LUTs
[10] might be a possible solution but still requires careful
investigation to prevent substantial increases in memory and
computational costs.

H. Broader Impacts
The proposed method mimics the retouching style of hu-

man annotators based on learned statistics of the training
dataset and as such will reflect biases in those data, in-
cluding ones with negative societal impacts. Besides, there
is no guarantee that the transformed colors by the method
will please everybody due to the subjectiveness of the im-
age/photo enhancement task. A possible mitigation strategy
is to concern the preference of specific downstream users
and retrains the method accordingly.
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Figure 2. Illustration of the learned sampling coordinates and the corresponding 3D LUTs for photo retouching on the PPR10K dataset
(360p) [7]. The bottom row visualizes the learned sampling coordinates on the so-called per-color-channel Accumulative Error Histogram
(AEH) [8]. The regions in the AEH exhibiting high curvature indicate wherein more sampling points are needed. Best viewed on screen.
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Figure 3. Additional qualitative comparisons of different methods for photo retouching on the FiveK dataset (4K) [1], and the corre-
sponding error maps. Best viewed in zoom in.
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