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We provide supplemental material to the original pa-
per [8].

A. Technical Details of Facestar Dataset
Video was captured using two synchronized OV2312

1600 x 1300 RGBIr cameras running at 60 fps. A cus-
tom camera aggregator sends video streams over USB to
PC where they are recorded. Audio was captured using a
custom 3D printed microphone array with 7 DPA 4060 pre-
polarized condenser microphones. The microphone signals
are recorded by an 8 channel RME OctaMic XTC analog to
digital converter running at 48kHz. The 8th channel records
a shared IRIG timecode signal from a Meinberg syncbox,
which is used to synchronize the video and audio subsys-
tems. Note that in this work we use a single camera and a
single microphone as inputs of our model.

Both participants signed a consent form for data usage
and publication, which have undertaken internal legal and
ethical review.

B. Extended Results Tables
Tables 4 and 5 show the full evaluation of models using

objective metrics on the Facestar and YouTube-Lip2Wav
datasets respectively. In addition to the objective metrics
described in the main text, we have also provided results for
speech-to-reverberation modulation energy ratio (SRMR)
and composite measures of speech quality (CSIG, CBAK,
COVL). Our approach consistently outperforms the base-
lines.

C. Extended Ablation Results
Table 6 shows extended ablation results of our model un-

der different signal-to-noise ratios (SNR). Here, the noise
added to the clip is sampled from Audioset [4], and we do
not include interfering speakers or reverberation. We find
that the vision modality is useful for enhancing speech, even
without an interfering speaker. In particular, there is an in-
creasing performance gap between audio-visual and audio-
only models at SNRs below 40dB.

Decoded from
GT Mel-Spectrograms Ground Truth

PESQ ↑ 2.49504 5.0
STOI ↑ 0.88038 1.0
MCD ↓ 1.68988 0.0

Mel-Spec-Dist ↓ 0.00069 0.0

CSIG ↑ 4.26524 5.0
CBAK ↑ 2.53051 5.0
COVL ↑ 3.37861 5.0

Table 1. Objective metrics evaluated on clean synthesized
speech. For PESQ, STOI, CSIG, CBAK, and COVL, higher is
better. For MCD and Mel-Spec-Dist, lower is better. See text for
details.

GT recordings Synthesis from GT
mel-spectrograms Can not tell

21.3% 10.7% 68.0%

Table 2. Perceptual Evaluation. Participants were presented two
video clips and asked to tell which of the two sounds more natural.

D. Importance of Human Evaluation Studies

Although the objective metrics shown in the main pa-
per and Tables 4 and 5 are widely used in literature, it is
important to note that no objective metric precisely reflects
how humans perceive speech quality [5]. In particular, ap-
proaches to speech enhancement based on speech synthesis,
such as ours, may generate many different waveform signals
that are perceptually similar to the ground truth. Objective
metrics that are relative (i.e., that compare denoised audio
waveform to ground truth audio waveform) may not accu-
rately reflect the performance of these approaches.

To demonstrate, we use HiFi-GAN [6] to synthesize
clean speech from ground truth mel-spectrograms. We eval-
uate the synthesized speech using objective metrics (Table
1) as well as human evaluation studies (Table 2). While
the objective metrics would suggest that the synthesized
speech is degraded compared to the ground truth speech,
as shown in Table 1, human participants could not differen-
tiate between the synthesized speech and the ground truth
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Figure 1. Illustration of Visual Attention. Figure shows
mel-spectrogram of denoised speech, and images overlaid with
heatmaps showing where the visual model attends to.

Figure 2. Effect of Speech Codebook. (a) Mel-spectrogram rep-
resentation of noise. (b) Mel-spectrogram representation of the
same noise from (a) after being converted to and reconstructed
from speech codes. The reconstructed noise resembles plausible
vocal sounds from the target speaker. See supplemental video for
examples.

speech based on their quality, as shown in Table 2. This
demonstrates the importance of human evaluation studies
for evaluating speech enhancement methods, in particular,
those based on speech synthesis.

E. Visual Attention of Model

The results in the main section demonstrate the impor-
tance of the visual modality for speech enhancement in our
model, particularly in the presence of interfering speakers.
To determine the regions of the video that the visual sub-
network attends to, we systematically zero out a 16 by 16
region of pixels of the video over 5 frames and compute
the increase in error on the mel-spectrogram. We scale and
overlay the results over the video to produce a heatmap of
visual attention of the model. The results show that the
model primarily attends to the lip motion of the speaker,
as shown in Figure 1.

F. Importance of Discrete Speech Codebook

Beyond enabling the efficiency of our approach, map-
ping audio-visual inputs to a sequence of discrete codes
from a speech codebook prevents unwanted noise from the
input from being propagated through the decoder and syn-
thesized into the output, since the codebook is trained on
clean speech only and its capacity is bottle-necked. To
demonstrate, we take noise audio clips N and find the se-
quence of codes that most closely generates this audio, i.e.,

Model PESQ ↑
(Narrow Band) STOI ↑

Speaker: Chemistry Lectures
Lip2Wav [7] 1.300 0.416
Ours 1.956 0.807

Speaker: Chess Lectures
Lip2Wav [7] 1.400 0.418
Ours 1.834 0.774

Speaker: Deep Learning Lectures
Lip2Wav [7] 1.671 0.282
Ours 1.871 0.705

Speaker: Ethical Hacking Lectures
Lip2Wav [7] 1.367 0.369
Ours 1.970 0.722

Speaker: Hardware Security Lectures
Lip2Wav [7] 1.290 0.446
Ours 1.831 0.690

Table 3. Comparison to Video-To-Speech Synthesis Models
on YouTube-Lip2Wav Dataset [7]. Our approach outperforms
Lip2Wav, the video-to-speech synthesis approach of [7]. For
PESQ (narrow band) and STOI, higher is better. Results for
Lip2Wav are copied directly from [7].

we optimize:

min
Z

||D(Z)–melspec(N)||2 (1)

Figure 2 shows an example result of this optimization: a
noise clip (Figure 2(a)) is mapped to a sequence of codes
that synthesizes a plausible sound from the target speaker,
even though the codes are selected to reproduce the noise.

G. Comparison to Video-to-Speech Synthesis
While Figure 3 of the main text demonstrates that our

synthesis approach to speech enhancement is driven by the
visual modality, incorporating audio is important for ensur-
ing faithfulness of the speaker’s pitch. As shown in Table
G, our approach described in Section 3 of the main paper
produces significantly higher-quality results than the state-
of-the-art video-to-speech synthesis model of [7]. Note that
uses the narrow band version of PESQ evaluation, whereas
our evaluation in the main text uses the wide band.



Model PESQ ↑ STOI ↑ SRMR ↑ F-SNR ↑ MCD ↓ CSIG ↑ CBAK ↑ COVL ↑ Mel-`2 ↓
Speaker 1

Demucs [1] 1.159 0.476 6.023 4.424 5.192 2.405 1.628 1.686 0.0127
AV-Masking [3] 1.233 0.567 6.744 5.510 4.990 2.472 1.710 1.752 0.00878
AV-Mapping [2] 1.293 0.596 4.850 1.223 4.831 1.012 1.038 1.001 0.00521
Ours 1.384 0.651 9.184 7.409 3.453 3.079 1.837 2.177 0.00458

Speaker 2
Demucs [1] 1.34 0.632 6.128 6.781 4.815 2.707 1.767 1.956 0.00861
AV-Masking [3] 1.280 0.620 6.581 6.473 5.380 2.459 1.679 1.777 0.00985
AV-Mapping [2] 1.373 0.657 4.373 4.381 4.940 1.514 1.304 1.200 0.00659
Ours 1.325 0.672 6.752 7.236 4.179 2.764 1.705 1.959 0.00667

Table 4. Quantitative Evaluation of Audio-Visual Speech Separation and Enhancement on Facestar Dataset. Our approach consis-
tently outperforms the baselines. For PESQ, STOI, SRMR, F-SNR, CSIG, CBAK, COVL, higher is better. For MCD and Mel-`2, lower is
better.

Model PESQ ↑ STOI ↑ SRMR ↑ F-SNR ↑ MCD ↓ CSIG ↑ CBAK ↑ COVL ↑ Mel-`2 ↓
Speaker: Chemistry Lectures

Demucs [1] 1.308 0.731 6.986 6.992 5.343 2.544 1.652 1.858 0.01610
AV-Masking [3] 1.319 0.717 7.107 7.187 5.598 2.476 1.591 1.810 0.01160
AV-Mapping [2] 1.485 0.751 5.969 7.295 4.413 2.695 1.726 1.975 0.00568
Ours 1.503 0.807 10.076 9.247 3.725 3.130 1.885 2.264 0.00486

Speaker: Chess Lectures
Demucs [1] 1.526 0.820 3.158 10.189 4.069 3.178 1.986 2.335 0.00625
AV-Masking [3] 1.426 0.756 4.056 9.128 5.069 2.868 1.833 2.113 0.00703
AV-Mapping [2] 1.360 0.706 3.485 7.466 4.876 2.533 1.643 1.829 0.00521
Ours 1.393 0.774 2.904 9.546 4.309 3.006 1.867 2.162 0.00467

Speaker: Deep Learning Lectures
Demucs [1] 1.336 0.566 8.957 7.049 4.756 2.636 1.578 1.895 0.01236
AV-Masking [3] 1.539 0.651 9.759 8.101 5.099 2.758 1.728 2.069 0.00975
AV-Mapping [2] 1.472 0.627 6.145 7.032 4.626 2.359 1.435 1.721 0.00646
Ours 1.539 0.705 11.529 8.684 4.308 2.946 1.816 2.170 0.00585

Speaker: Ethical Hacking Lectures
Demucs [1] 1.321 0.613 9.110 7.366 4.382 2.715 1.760 1.947 0.00924
AV-Masking [3] 1.387 0.655 9.407 7.539 4.888 2.700 1.651 1.955 0.00841
AV-Mapping [2] 1.390 0.630 7.101 6.308 4.273 2.488 1.571 1.778 0.00561
Ours 1.491 0.722 13.104 8.664 3.592 3.073 1.832 2.211 0.00475

Speaker: Hardware Security Lectures
Demucs [1] 1.424 0.631 11.481 6.621 5.069 2.627 1.704 1.937 0.01062
AV-Masking [3] 1.521 0.66431 11.045 7.412 5.180 2.699 1.701 2.022 0.00950
AV-Mapping [2] 1.379 0.589 5.090 6.357 5.027 2.430 1.508 1.765 0.00800
Ours 1.487 0.690 12.875 7.862 4.428 2.878 1.704 2.105 0.00747

Table 5. Quantitative Evaluation of Audio-Visual Speech Separation and Enhancement on YouTube-Lip2Wav [7] Dataset. Our
approach consistently outperforms the baselines. For PESQ, STOI, SRMR, F-SNR, CSIG, CBAK, COVL, higher is better. For MCD and
Mel-`2, lower is better.

SNR 0dB 10dB 20dB 30dB 40dB
Audio-Only 0.0100 0.0066 0.0048 0.0040 0.0038
No Auto-Regressive Module 0.0055 0.0041 0.0036 0.0035 0.0034
Full Model 0.0047 0.0038 0.0034 0.0031 0.0029

Table 6. Extended Ablation Results. The values shown are the mean `2 errors between predicted and ground truth mel-spectrograms for
ablation models trained on the Facestar dataset (Speaker 1); lower is better. See text for details.
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