
BANMo: Building Animatable 3D Neural Models from Many Casual Videos:
SUPPLEMENTARY MATERIALS

A. Notations
We refer readers to a list of notations in Tab. 5 and a list

of learnable parameters in Tab. 6. We compare with Nerfies
and ViSER and summarize the differences in Tab. 1.

Table 1. Difference between Nerfies, ViSER, and BANMo.
Method shape deformation registration

Nerfies implicit dense SE(3) photometric
ViSER mesh control points self-supervised feature
BANMo implicit control points pre-trained feature

B. Method details
B.1. Root Pose Initialization

As discussed in Sec. 3.4, to make optimization robust,
we train a image CNN (denoted as PoseNet) to initialize
root body transforms Gt that aligns the camera space of
time t to the canonical space of CSE, as shown in Fig. 1.

PoseNet

DensePose
CNN ResNet-18Input frames SO(3) initializations

Figure 1. Inference pipeline of PoseNet. To initialize the opti-
mization, we train a CNN PoseNet to predict root poses given a
single image. PoseNet uses a DensePose-CNN to extract pixel
features and decodes the pixel features into root pose predictions
with a ResNet-18. We visualize the initial root poses on the right.
Cyan color represents earlier time stamps and magenta color rep-
resent later timestamps.

Preliminary DensePose CSE [1, 2] trains pixel embed-
dingsψI and surface feature embeddingsψ for humans and
quadruped animals using 2D keypoing annotations. It rep-
resents surface embeddings by a canonical surface with N
vertices and vertex features ψ ∈ RN×16. A SMPL mesh is
used for humans, and a sheep mesh is used for quadraped
animals. The embeddings are trained such that given an
pixel feature, a 3D point on the canonical surface can be
uniquely located via feature matching.
Naive PnP solution Given 2D-3D correspondences pro-
vided by CSE, one way to solve for Gt is to use perspective-
n-points (PnP) algorithm assuming objects are rigid. How-
ever, the PnP solution suffers from catastrophic failures

due to the non-rigidity of the object, which motivates our
PoseNet solution. By training a feed-forward network with
data augmentations, our PoseNet solution produces fewer
gross errors than the naive PnP solution.

CSE feature
rendering

Augmentation:
Random masks

Generate random
viewpoints

PoseNet

Densepose CSE
surface embedding

Figure 2. Training pipeline of PoseNet. To train PoseNet, we
use DesePose CSE surface embeddings, which is pertained on
2D annotations of human and quadruped animals. We first gen-
erate random viewpoints on a sphere that faces the origin. Then
we render surface embeddings as 16-channel images. We further
augment the feature images with random adversarial masks to im-
prove the robustness to occlusions. Finally, the rotations predicted
by PoseNet are compared against the ground-truth rotations with
geodesic distance.

Synthetic dataset genetarion. We train separate PoseNet,
one for human, and one for quadruped animals. The train-
ing pipeline is shown in Fig. 2. Specifically, we render sur-
face features as feature images ψrnd ∈ R112×112×16 given
viewpoints G∗ = (R∗,T∗) randomly generated on a unit
sphere facing the origin. We apply occlusion augmenta-
tions [5] that randomly mask out a rectangular region in the
rendered feature image and replace with mean values of the
corresponding feature channels. The random occlusion aug-
mentation forces the network to be robust to outlier inputs,
and empirically helps network to make robust predictions
in presence of occlusions and in case of out-of-distribution
appearance.
Loss and inference. We use the geodesic distance between
the ground-truth and predicted rotations as a loss to update
PoseNet,

Lgeo = || log(R∗RT)||, R = PoseNet(ψrnd), (1)

where we find learning to predict rotation is sufficient for
initializing the root body pose. In practice, we set the
initial object-to-camera translation to be a constant T =
(0, 0, 3)T . We run pose CNN on each test video frame to

1

obtain the initial root poses Gt
0 =

(
R,T

)
, and compute a

delta root pose with the root pose MLP:

Gt = MLPG(ωt
r)G

t
0. (2)

B.2. Active sampling over (x, y, t)

Inspired by iMAP [6], our ray sampling strategy fol-
lows an easy-to-hard curriculum. At the early iterations, we
randomly sample a batch of Np pixels for volume render-
ing and compute reconstruction losses. At the same time,
we optimize a compact 5-layer MLP function to represent
the uncertainty over the image coordinate and frame index:
Û(x, y, t) = MLPU(x, y, t). The uncertainty MLP is op-
timized by comparing against the color reconstruction er-
rors in the current forward step:

LU =
∑
x,t

∥∥∥Lrgb(x
t)− Û(xt)

∥∥∥ . (3)

Note that the gradient from LU to Lrgb(x
t) is stopped such

that LU does not generate gradients to parameters besides
MLPU. After 40% of the optimization steps, we re-
place half of the samples with active samples from pixels
with high uncertainties. To do so, we randomly sample
Na′

= 24576 pixels, and evaluate their uncertainties by
passing their coordinates and frame indices to MLPU. Ac-
tive samples dramatically improves reconstruction fidelity,
as shown in Fig. 6.

B.3. Optimization details

Canonical 3D grid. As mentioned in Sec 3.3, we define a
canonical 3D grid V∗ ∈ R20×20×20 to compute the match-
ing costs between pixels and canonical space locations. The
canonical grid is centered at the origin and axis-aligned
with bounds [xmin, xmax], [ymin, ymax], and [zmin, zmax]. The
bounds are initialized as loose bounds and are refined dur-
ing optimization. For every 200 iterations, we update the
bounds of the canonical volume as an approximate bound
of the object surface. To do so, we run marching cubes on
a 643 grid to extract a surface mesh and then set L as the
axis-aligned (x, y, z) bounds of the extracted surface.
Near-far planes. To generate samples for volume render-
ing, we dynamically compute the depth of near-far planes
(dtn, d

t
f) of frame t at each iterations of the optimization.

To do so, we compute the projected depth of the canon-
ical surface points dti = (ΠtGtX∗i)2. The near plane is
set as dtn = min(di) − ϵL and the far plane is set as
dtf = max(di)+ϵL, where ϵL = 0.2

(
max(di)−min(di)

)
.

To avoid the compute overhead, we approximate the surface
with an axis-aligned bounding box with 8 points.
Hyper-parameters. We use 1cycle learning rate scheduler,
which warms-up with a low learning rate to the maximum,
and anneals the learning rate to a final learning rate. We
apply lrinit = 2e − 5, lrmax = 5e − 4, lrfinal = 1e − 4.

Table 2. Table of hyper-parameters.

Name Value Description

B 25 Number of bones
N 128 Sampled points per ray
Np 6144 Sampled rays per batch
(H,W) (512,512) Resolution of observed images

We refer readers to a complete list of hyper-parameters in
Tab. 2.
Multi-stage optimization The final optimization takes
three stages, where the parameters being updated and the
loss functions being used are different. The first stage uses
all the losses and updates all the parameters described in the
paper. Typically, the first stage already produces 3D recon-
structions with good shape and deformation. The goal of
the stage 2 is to improve the articulations (e.g., to correctly
articulate the crossing legs for cat-pikachiu) with co-
ordinate gradient descent, where we turn off the reconstruc-
tion losses and only use the 2D cycle consistency loss to
update the articulation parameters while keeping shape pa-
rameters fixed. Finally, stage 3 improves details of the ge-
ometry by using a larger weight for the color reconstruction
loss.
Experiment details When running Nerfies on AMA and
animated objects, we found using RGB reconstruction loss
does not produce meaningful results possibly due to the ho-
mogeneous background color. To improve Nerfies results,
we provide it with ground-truth object silhouettes, and op-
timize a carefully balanced RGB+silhouette loss [8].

C. Additional results
C.1. SFM root pose initialization

COLMAP [3, 4] failed to converge when focused on the
deformable object due to violation of rigidity, leading to
very few successful registrations (18 over 811 images reg-
istered on casual-cat). A recent end-to-end method,
DROID-SLAM [7], registered all the images but the accu-
racy is low compared to PoseNet, as shown in Tab. 3. We
also tried SFM to estimate and compensate for the camera
motion (using background as rigid anchor), but this did not
help to recover the pose of the object due to its global move-
ment w.r.t. to the background.

C.2. More ablation study

In Sec. 4.3, we presented qualitative results of diagnos-
tics experiments. In Tab. 4, we report the results of other
ablations followed by analysis.
Number and location of bones As shown in the first group
of Tab. 4 and Fig. 3, using too few bones fails to re-

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html#torch.optim.lr_scheduler.OneCycleLR

Table 3. Evaluation on root pose prediction. Mean and stan-
dard deviation of the rotation error (°) over all frames (↓). We use
BANMo-optimized poses as ground-truth. Rotations are aligned
to the ground-truth by a global rotation under chordal L2 distance.

Method c-cat c-human ama-human

CSE-PoseNet 18.6±16.2 12.8±8.9 11.8±17.4
DROID-SLAM 65.5± 44.5 55.8± 39.2 83.6± 50.5

Table 4. Results on AMA swing and samba. 3D Chamfer dis-
tance (cm, ↓) and F-score (%, ↑) averaged over all frames.

Method CD F@1% F@2% F@5%

number-bone=4 9.88 28.1 52.4 84.1
number-bone=9 9.08 31.2 56.4 86.8
number-bone=16 9.02 31.8 57.2 87.2
number-bone=25 9.08 31.8 57.0 87.1

–w/o in-surface loss 9.14 29.9 54.8 86.7
–quad. embedding 9.70 29.8 54.2 85.4

number-bone=64 9.18 31.1 56.6 87.5
number-bone=100 9.11 31.4 56.7 87.3

pose error ϵ=20° 8.75 30.9 57.0 88.1
pose error ϵ=50° 8.91 29.8 56.1 88.1
pose error ϵ=90° 9.91 28.4 54.8 85.7

coverage=90° (2 vids) 10.61 29.3 54.3 84.1
coverage=180° (4 vids) 8.94 33.0 59.8 87.9
coverage=270° (6 vids) 9.09 29.8 56.1 87.6

active-sample=0% 9.63 29.1 53.7 85.8
active-sample=25% 8.60 32.3 57.9 88.0
active-sample=50% 9.14 29.9 54.8 86.7

cover all body parts due to over-regularization. Using more
than 16 bones produces good reconstructions, but consumes
more memory when computing skinning weights. Enforc-
ing them to stay close to the surface with a sinkhorn diver-
gence loss improves the results (Tab. 4, L16-17).

#bones=9 #bones=16 #bones=25 #bones=64#bones=4 #bones=36

Figure 3. Sensitivity to number of bones.

Sensitivity to incorrect initial pose We inject different lev-
els of Gaussian noise into the initial poses, leading to av-
erage rotation errors ϵ ∈ {20, 50, 90}°. As shown in the
second group of Tab. 4, BANMo is stable up to 50° rotation
error.
Pre-trained embeddings Pre-trained embeddings help
BANMo outperform Nerfies, but it is not crucial given good
initial root poses (ϵ = 12.8± 8.9°). As shown in Tab. 4, us-
ing embeddings pre-trained for quadruped animals for hu-

man optimization produces slightly worse results.
How much data are needed? To reconstruct a complete
shape, BANMo requires all object surface to be visible from
at least one frame. Beside completeness, more videos al-
lows to estimate better skinning weights and a more regular
motion. We evaluate view coverage in the third group of
Tab. 4.
Importance sampling We use active sampling to avoid
sampling from uninformative frames and pixels. It consis-
tently improves reconstruction results as shown in the last
group of Tab. 4.
Bone re-initialization We qualitatively evaluate the effect
of rest bone re-initialization, which re-initializes bone pa-
rameters according to the current estimation of shape. As
shown in Fig. 4, without re-initializing the bones, the opti-
mization may stuck at bad local optima and the final recon-
struction may become less accurate.

With bone reinitializationW/o bone reinitialization

Figure 4. Effect of bone re-initialization. We find it important to
re-initialize rest bone parameters after finding a better approxima-
tion of object geometry.

Delta skinning weights We qualitatively evaluate the ef-
fect of delta skinning weights. As shown in Fig. 5, without
learning a delta skinning weights specific to each 3D point,
the reconstructed shape and motion may be over-regularized
by the 3D Gaussians.

W/o delta skin. W/ delta skin. W/o delta skin. W/ delta skin.

Figure 5. Effect of delta skinning weights. We find it important
to learn a point-specific delta skinning weight function to recon-
struction motions in high-quality.

Active sampling. We show the effect of active sampling
on a casual-cat video (Fig. 6): removing it results in
slower convergence and inaccurate geometry.

https://github.com/scipy/scipy/issues/10862
https://www.kernel-operations.io/geomloss/api/pytorch-api.html
https://www.kernel-operations.io/geomloss/api/pytorch-api.html

Reference w/o active sampling (Sec. 3.4) Visualization of active samples (red)

Figure 6. Diagnostics of active sampling over (x, y). With no
active sampling, our method converges slower and misses details
(such as ears and eyes). Active samples focus on face and bound-
aries pixels where the color reconstruction errors are higher.

C.3. Qualitative results

We refer readers to our supplementary webpage for com-
plete qualitative results.

Table 5. Table of notations.

Symbol Description

Index
t Frame index, t ∈ {1, . . . , T}
b Bone index b ∈ {1, . . . , B} in neural blend skinning
i Point index b ∈ {1, . . . , N} in volume rendering

Points
x Pixel coordinate x = (x,y)
Xt 3D point locations in the frame t camera coordinate
X∗ 3D point locations in the canonical coordinate
X̂∗ Matched canonical 3D point locations via canonical embedding

Property of 3D points
c ∈ R3 Color of a 3D point
σ ∈ R Density of a 3D point
ψ ∈ R16 Canonical embedding of a 3D point
W ∈ RB Skinning weights of assigning a 3D point to B bones

Functions on 3D points
Wt,←(Xt) Backward warping function from Xt to X∗

Wt,→(X∗) Forward warping function from X∗ to Xt

S(X, ωb) Skinning function that computes skinning weights of X under body pose ωb

Rendered and Observed Images
c/ĉ Rendered/observed RGB image
o/ŝ Rendered/observed object silhouette image
F/F̂ Rendered/observed optical flow image

Table 6. Table of learnable parameters.

Symbol Description

Canonical Model Parameters
MLPc Color MLP
MLPSDF Shape MLP
MLPψ Canonical embedding MLP

Deformation Model Parameters
Λ0 ∈ R3×3 Scale of the bones in the “zero-configuration” (diagonal matrix).
V0 ∈ R3×3 Orientation of the bones in the “zero-configuration”.
C0 ∈ R3 Center of the bones in the “zero-configuration”.
MLP∆ Delta skinning weight MLP
MLPG Root pose MLP
MLPJ Body pose MLP

Learnable Codes
ω∗b ∈ R128 Body pose code for the rest pose
ωt

b ∈ R128 Body pose code for frame t
ωt

r ∈ R128 Root pose code for frame t
ωt

e ∈ R64 Environment lighting code for frame t, shared across frames of the same video

Other Learnable Parameters
ψI CNN pixel embedding initialized from DensePose CSE
αs Temperature scalar for canonical feature matching
β Scale parameter that controls the solidness of the object surface
Π ∈ R3×3 Intrinsic matrix of the pinhole camera model

References
[1] Natalia Neverova, David Novotny, Vasil Khalidov, Marc

Szafraniec, Patrick Labatut, and Andrea Vedaldi. Continuous
surface embeddings. In NeurIPS, 2020. 1

[2] Natalia Neverova, Artsiom Sanakoyeu, Patrick Labatut, David
Novotny, and Andrea Vedaldi. Discovering relationships be-
tween object categories via universal canonical maps. In
CVPR, 2021. 1

[3] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In CVPR, 2016. 2

[4] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for unstruc-
tured multi-view stereo. In European Conference on Com-
puter Vision (ECCV), 2016. 2

[5] Krishna Kumar Singh and Yong Jae Lee. Hide-and-seek:
Forcing a network to be meticulous for weakly-supervised ob-
ject and action localization. In ICCV, 2017. 1

[6] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew Davi-
son. iMAP: Implicit mapping and positioning in real-time.
In ICCV, 2021. 2

[7] Zachary Teed and Jia Deng. Droid-slam: Deep visual slam
for monocular, stereo, and rgb-d cameras. Advances in Neural
Information Processing Systems, 34, 2021. 2

[8] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neural
surface reconstruction by disentangling geometry and appear-
ance. In NeurIPS, 2020. 2

	. Notations
	. Method details
	. Root Pose Initialization
	. Active sampling over (x,y,t)
	. Optimization details

	. Additional results
	. SFM root pose initialization
	. More ablation study
	. Qualitative results

