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Figure 1. Visual comparison with VITON methods. (a) Orig-
inal images. (b) Synthesized images generated by CP-VTON-
PLUS [2]. (c) Synthesized images generated by PF-AFN [1]. (d)
Synthesized images generated by the BodyGAN.

1. Network Structure

The proposed BodyGAN consists of a pose encoding
branch, an appearance encoding branch, and a generator.
The pose encoding branch and the appearance encoding
branch are responsible for condition map generation. The
three subnetworks in the pose encoding branch can be
replaced with state-of-the-art semantic segmentation net-
works, image to 3D surface networks, and key point es-
timation networks. The generator is further composed of
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Figure 2. Failure cases. (a), (c) and (e) are the original images. (b),
(d) and (f) are the synthesized images generated by the BodyGAN.

two encoders and one decoder. The two encoders are de-
signed for extracting pose and appearance features, which
follow the common practice of convolutional encoders. In
our implementation, we use the encoder of Pix2PixHD [4]
for the pose condition maps, of which the input size is
9 × 768 × 576. Here we follow the notation of tensor
shape in PyTorch, i.e., C × H × W , where C,H,W de-
note the channel, the height, and the width of a tensor. The
input size of the encoder extracting appearance features is
10× 768× 576. The pose features and the appearance fea-
tures are merged via the decoder, which is composed of five
sequential SPADE modules [3] (for feature transformation
and upsampling). Features fed into these five modules are
of size 1024 × 24 × 18, 1024 × 48 × 36, 512 × 96 × 72,
256 × 192 × 144, and 128 × 384 × 288, respectively. The
synthesized image is of size 3× 768× 576.

2. Qualitative Results

We provide more visual examples of our synthesized
images. Fig. 1 demonstrates the results of our methods
and other two state-of-the-art virtual try-on methods (CP-
VTON-PLUS [2] and PF-AFN [1]). Fig. 3 shows our
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Figure 3. More visual examples of our synthesized images. The first column are the original images, while the other columns are the
synthesized images generated by the BodyGAN with various rendered clothes.

synthesized images with various rendered clothes. In fact,
our BodyGAN can generate realistic faces and poses under
large changes, as shown in Fig. 4

Our BodyGAN is robust with different subnetwork con-
figurations. We implement three variants, i.e., replacing the
backbone for key point detection with HRNet (denoted as
Ours-HRNet-kp), enhancing the segmentation network by
considering more classes (Ours-enh-sg), and constructing a

lightweight DensePose model (Ours-lw-dp). As reported in
Tab. 1, these variants achieve similar results on DeepFash-
ion and outperform other methods.

3. Failure Cases

As we have discussed in the paper, there are a few limita-
tions of our BodyGAN, which we propose to handle in the
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Figure 4. Left: Try-on results of our method under large pose changes and head rotations. Right: Visual comparison with 3D model based
methods. The results of our BodyGAN have realistic, rich, and complex textures/details. Please zoom in for the details.

Methods/Results SSIM ↑ FID↓ LPIPS↓
SPADE* 0.5601 37.2646 0.0234

Pix2PixHD* 0.6205 29.7461 0.0202
Ours-HRNet-kp 0.8471 6.1655 0.0070

Ours-enh-sg 0.8483 6.0487 0.0070
Ours-lw-dp 0.8002 8.5279 0.0097

Ours-original 0.8470 6.1654 0.0070

Table 1. Performance of BodyGAN with different subnetworks.

future. Fig. 2 shows a few failure cases of the BodyGAN.
The source images in the first row are captured from behind
the person, which are rare (especially for applications like
try-on) and such data are not available in our training set.
Furthermore, it is hard to detect the faces in this case, which
hinders the performance of pose encoding. The source im-
ages in the second row are affected by non-uniform illu-
mination distributions and color distortions. In this case,
recovering the original skin color of the person is difficult.
Therefore, the synthesized images of our BodyGAN are not
satisfactory under these two circumstances. Possible solu-
tions for these problems include anomaly detection and ad-
hoc procedures/modules. For example, we may consider
certain priors or constraints of the skin color to detect the
anomalous image, and recover the normal/natural skin color
with those from other body parts.

4. Mitigation Strategies for Negative Social Im-
pacts

Our method focuses on human body synthesis, and its re-
sults are realistic and be controlled conveniently over mul-

tiple factors, which might be used for generating fake im-
ages and videos. Therefore, we will not publish the code of
our BodyGAN. However, we will consider building a plat-
form for demonstration, or providing encrypted APIs for
authenticated downstream applications. Interested Readers
can also contact us via email for technical and implementa-
tion details.
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