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A. Further Implementation Details
Our experiments are conducted on 8 GPUs with batch

size of 16 and implemented by PyTorch [5]. Following
the task-based continual object detection setting in [4], we
use COCO 2014 valminusminival and COCO 2014 mini-
val datasets as the training and test set of COCO. For Pascal
VOC, we train on VOC 2007 and VOC 2012 trainval set and
test on VOC 2007 test set. For the class-based continual ob-
ject detection setting, we use split Pascal VOC 2007 and
group the classes following [2]. Without loss of generality,
our proposed ROSETTA can be equipped with different ob-
ject detector backbones. In our experiment, we choose two
representative object detectors as our backbones: Faster R-
CNN [6] and Sparse R-CNN [7]. Both these two kinds of
detectors use ResNet50 [1] pre-trained on ImageNet [3].

For Faster R-CNN backbone, we use the same training
scheme as [4] and generate our baseline results of joint
training and fine-tuning. Following [4], the learning rate
is set to 0.01 for the first 10 epochs and 0.001 for the last 2.
As for Sparse R-CNN, we use the default hyper-parameters
with 100 proposal boxes. Specifically, we use 3× training
schedule (36 epochs) on COCO and VOC and the learning
rate is set to 2.5 × 10−5 for early training stages, divided
by 10 at epoch 27 and 33, respectively. On account of the
small sizes of KITTI and Kitchen, we train the Sparse R-
CNN for 9k iterations instead. Our gated module is applied
to the last three stages of the ResNet50 [1] backbone for
both Faster R-CNN and Sparse R-CNN while the first two
stages are fixed during training. The class embeddings Ct in
the gated module are implemented by the word embeddings
of class labels of task t. Here we generate the word em-
beddings using the “en core web lg” model of spacy mod-
ule in https://github.com/explosion/spacy-
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models/releases. We first pre-train a non-sparse de-
tector without gated module and use it to guide the training
of the gated detector with distillation loss. As mentioned
in the main paper, the gated model is further fine-tuned for
2 epochs for better co-adaptation between the binary gates
and the channel weights. The Pascal VOC mean average
precision (mAP) is used as our evaluation metric follow-
ing [4].

B. Overall optimization objective and sensitiv-
ity analysis of hyper-parameters

Our overall optimization objective is L = Ldet +
λsLsparsity + λkdLkd + λdivLdiversity. Ldet indicates
the standard detection loss of Faster/Sparse R-CNN.
We provide sensitivity analysis on Kitchen(task2) of
KITTI→Kitchen for λs, λkd, λdiv in Tab. 1.

λs 1 2 4 8

Kitchen(task2) 76.3 78.3 77.4 74.8

λkd 10 100 500 1000

Kitchen(task2) 75.2 76.1 78.3 76.3

λdiv 1 2 4 8

Kitchen(task2) 75.0 76.3 78.3 76.5

Table 1. Sensitivity analysis of λs, λkd and λdiv .

As for the threshold hyper-parameter η in Eq.(8) of the
main paper, we also provide its sensitivity analysis in Tab. 2.
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Figure 1. Visualization of the learned binary gates for the sequential tasks: COCO→VOC→KITTI→Kitchen. Yellow and blue channels
indicate the inactivated and activated channels for specific tasks. For better illustration, gates are sorted by the overall execution rate over
all tasks.

η 0.1 0.3 0.5 0.7 0.9

Kitchen(task2) 75.7 75.9 78.3 77.8 77.5

Table 2. Sensitivity analysis of η.

C. Evaluation Protocol for Class-incremental
Setting

During the inference stage of class-incremental detec-
tion, our proposed ROSETTA does not need a task iden-
tifier to know which task an input image comes from. Here
we simply take a “15+5” setting as an example. In the test
stage for evaluating total 20 classes, given an arbitrary im-
age, we can equip two sub-models with their corresponding
class embeddings for the first 15 and last 5 classes, which
are responsible for detecting whether those classes of ob-
jects appear in this image, respectively. In this way, making
two inferences of lightweight sub-models with their corre-
sponding class embeddings can detect any objects of total
20 classes, without exactly knowing which task this image
belongs to. Actually, our proposed model-based routing ap-
proach and the property of object detection make this eval-
uation protocol reasonable.

D. Memory Budget

In addition to the storage of the detector backbone, e.g.,
a Faster R-CNN or Sparse R-CNN, ROSETTA demands ex-
tra storage requirements in the memory bank, e.g., histori-
cal gate lists, prototypes and class embeddings of different
tasks. Taking the detection task on Pascal VOC as an ex-
ample, there are totally about 154KB memory to be used:
gate list = 110KB, prototypes = 20KB (1KB per class),
class embeddings = 24KB. By comparison, the continual
object detection method in [4] needs to store 100 exemplars

(images) and at least 10MB memory is required (1 exem-
plar = 100KB), without considering other budgets. Hence,
ROSETTA only requires limited memory budget compared
to other methods.
Remark: No extra memory budget is required for a his-
torical teacher model of our knowledge distillation strategy.
This is because our non-gated teacher model is only used
for guiding the gate learning of the current task and will be
discarded after training the gated student model.

E. Visualization of Binary Gates
As shown in Fig. 1, we visualize the learned static bi-

nary gates of the backbone’s last layer for the sequential
tasks: COCO→VOC→KITTI→Kitchen. We can conclude
that ROSETTA can capture the task correlations and auto-
matically activate more exclusive channels if it observes a
significant domain gap.

F. Examples of Continual Detection Results
Here we visualize the detection results of the sequen-

tial tasks: COCO→VOC→KITTI→Kitchen in Fig. 2. The
comparison between a baseline model, i.e., fine-tuning and
ROSETTA is provided. The detection results in the left col-
umn of Fig. 2 illustrate that the baseline strategy, i.e., fine-
tuning is confronted with the problem of catastrophic for-
getting, which leads to the mistakes of localization (Fig. 2a,
Fig. 2c), classification (Fig. 2a) and the problem of low re-
call (Fig. 2e) when inferred on previously seen tasks. For
example, no sheep is successfully detected in Fig. 2a; the
bounding boxes of “bicycle” and “person” are not accurate
in Fig. 2c; 3 cars are missed in Fig. 2e. By comparison,
the right column of Fig. 2 shows that ROSETTA can well
tackle the issue of catastrophic forgetting and memorize the
previously learned knowledge.



(a) Fine-tuning (task1: COCO) (b) ROSETTA (task1: COCO)

(c) Fine-tuning (task2: VOC) (d) ROSETTA (task2: VOC)

(e) Fine-tuning (task3: KITTI) (f) ROSETTA (task3: KITTI)

(g) Fine-tuning (task4: Kitchen) (h) ROSETTA (task4: Kitchen)

Figure 2. Comparison between fine-tuning and ROSETTA on COCO→VOC→KITTI→Kitchen.
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