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A. Motivations
In GNCD, base and novel sets contain different train-

ing targets — for base set we have accurate and consistent
ground-truth labels, while for novel set the training targets
(generated pseudo labels) are less accurate and may change
during training. We aim to build a model able to handle both
base and novel classes, which is challenging due to (1) the
ambiguity between base and novel classes, and (2) the lack
of supervision on novel data. To address (1), we propose
to model base and novel data using two groups of compo-
sitional experts with complementary specialties from both
batch-wise and class-wise perspectives. For (2), we propose
a Local Aggregation strategy to refine the pseudo labels by
encouraging local consistency among novel data.

Our idea of the compositional structure comes from the
observations towards GNCD output space, which can be
clearly characterized with a batch-class view (cf. Fig. 1b in

our paper). From this view the GNCD output space ex-
hibits a compositional nature in both batch-wise and class-
wise perspectives. We propose to model this compositional
nature using a group of batch-wise experts (Fig. 1c) and
another group of class-wise experts (Fig. 1d). Each group
of experts is capable of characterizing the whole dataset,
yet presents different specialties — with batch-wise experts
capturing separability between base and novel sets, and
class-wise experts modeling discriminability within each
set of classes. Considering the challenges of GNCD, we
keep both groups of experts to make the most of their learn-
ing abilities by allowing complementary collaborations.

We further propose to address the aforementioned in-
consistent training targets using local aggregation for novel
samples, which complement the global-to-local pseudo-
labeling with local-to-local regularization. Extensive exper-
iments have validated the effectiveness of the above ideas,
which compose our proposed ComEx and contribute to its
superior performance in GNCD.

B. Implementation Details
B.1. Over-Clustering and Multi-Head Clustering

We follow [2, 6, 10] to use over-clustering and multi-
head clustering strategies for better clustering performance.
Over-clustering [10] is to output more fine-grained parti-
tions of the novel set, which can enhance the feature repre-
sentations. Concretely, an over-clustering head serves as an-
other novel-batch/class expert with Cb+m×Cn or m×Cn

output neurons, where m is the over-clustering factor.
Multi-head clustering [2, 10] smooths down possible

clustering degeneration with multiple clustering heads. Fol-
lowing [6], we apply this strategy to both clustering and
over-clustering heads in novel-batch/class expert, and iter-
ate over these heads in training. We refer the reader to [6]
for more details. In experiments we use the same head num-
ber and over-clustering factor as in [6] for fair comparisons.

B.2. Dataset Details

Three datasets are used for evaluations, namely CI-
FAR10/100 [11] and ImageNet [5]. The CIFAR10/1001
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dataset is released under the MIT license, and the Im-
ageNet2 dataset’s terms of access allow non-commercial
use for education and research purposes. In detail, CI-
FAR10/100 contains 50,000 images from 10/100 classes,
each of which is in size of 32× 32, while ImageNet is
a large-scale dataset containing 1.28 million images from
1000 classes with an average image resolution of 469×387.
For CIFAR10/100, we use 5/5, 80/20, 50/50, 30/70 (intro-
duced in Sec. C.2) as base/novel class splits. For ImageNet,
following [8, 9], we divide the whole 1000 classes into 882
and 118 classes, in which the 882 classes are used as the
base classes. We further sample three subsets from the 118
classes, each of which contains 30 classes, and we use one
of them at a time as the novel set. For evaluations on Ima-
geNet, the results are averaged over the three subsets. The
split information can also be found in Tab. 2 in our paper.

B.3. Training Details

We follow [6] to pre-train our model for 200 epochs on
the base set to learn basic semantic discriminability, and
then fine-tune it for another 200 epochs on both base and
novel sets to learn a unified model. In practice, we directly
fine-tune our model based on the pre-trained model offi-
cially provided in [6] for fair comparisons. For model opti-
mization, we use SGD with momentum 0.9 as the optimizer,
linear warmup (10 epochs) + cosine annealing (0.2 base,
0.001 min) as the learning rate scheduler, with the weight
decay rate set to 1.5× 10−4 and a 256 batch size. The tem-
perature parameter τ in Eq. (1) and (5) is set to 0.1. We use
a size of 500 for the queue Q, and the hyperparameter α in
Eq. (6) is set to 0.5. For pseudo-labeling, we inherit the im-
plementation in [3] and use ϵ = 0.05 and 3 iterations for the
Sinkhorn-Knopp algorithm [4]. We provide in Algorithm A
the pseudocode of our proposed ComEx in a PyTorch-like
fashion, where we leave out ℓ2-normalizations, queuing
function, over-clustering, multi-head clustering, and SGD
update for simplicity. In Lines 46 and 80–84 we use a dis-
tribution sharpening strategy, inspired by [1], to reduce en-
tropy of the pseudo labels, which helps to generate better
training targets for novel samples.

B.4. Evaluation Details

As mentioned in our paper, we involve two types of eval-
uations, namely (a) task-aware and (b) task-agnostic evalu-
ations, which can be further divided into four specific pro-
tocols based on which set an evaluation takes place: (a1)
training split of the novel set, (a2) testing split of the novel
set, (a3) testing split of the base set, and (b1) both testing
splits of the base and novel sets.

For evaluations on (a1) and (a2), we only use the pre-
dictions from novel-batch and novel-class experts; for (a3)

2https://image-net.org/

Protocol → Task-agnostic -aware

Method ↓ Base Novel All Novel

UNO (Orig.) 93.5 93.3 93.4 96.1±0.5
UNO (Reprod.) 93.6 89.9 91.8 92.6±0.5
ComEx (Ours) 95.0 92.6 93.8 93.6±0.3

Table A. Comparison with UNO [6] on CIFAR10. Results
are reported in classification/clustering accuracy (%) using task-
agnostic (b1) and task-aware (a1) evaluation protocols.

Protocol → Task-agnostic -aware

Method ↓ Base Novel All Novel

UNO (Orig.) 73.2 73.1 73.2 85.0±0.6
UNO (Reprod.) 74.4 68.0 73.1 81.3±0.6
ComEx (Ours) 75.2 77.3 75.6 85.7±0.7

Table B. Comparison with UNO [6] on CIFAR100-20. Results
are reported in classification/clustering accuracy (%) using task-
agnostic (b1) and task-aware (a1) evaluation protocols.

Protocol → Task-agnostic -aware

Method ↓ Base Novel All Novel

UNO (Orig.) 71.5 50.7 61.1 52.9±1.4
UNO (Reprod.) 72.3 47.0 59.7 49.3±1.3
ComEx (Ours) 75.3 53.5 64.4 53.4±1.3

Table C. Comparison with UNO [6] on CIFAR100-50. Results
are reported in classification/clustering accuracy (%) using task-
agnostic (b1) and task-aware (a1) evaluation protocols.

we only use base-batch and base-class experts. For evalu-
ations on (b1), we use the combination of both batch- and
class-wise experts. Note that in our paper we only report
comparisons with state-of-the-art methods under (a1) and
(b1), which is due to 1) no existing results under the other
protocols can be found, and 2) these two protocols should
be enough for comprehensive evaluations. We did not in-
volve the ImageNet dataset for task-agnostic evaluations for
two reasons: 1) the training is considerably time-consuming
(one typical run takes over 3 days on an NVIDIA RTX 2080
Ti GPU for 60 epochs with 256 batch size); 2) novel classes
(30) are too few compared to base classes (882), making
it inconclusive for task-agnostic evaluations. As a result,
to our best knowledge, task-agnostic evaluations on Ima-
geNet are currently not seen in any existing works. Hope-
fully a smaller base set will enable further evaluations on
ImageNet, which we leave as our future work.

C. Additional Results

C.1. Reproduced Results of UNO

The official code of the current state-of-the-art method,
UNO [6], had a peculiar bug that results in uncommon

https://image-net.org/


high accuracy on all datasets, especially CIFAR10. To be
specific, the softmax normalization was mistakenly applied
to the batch dimension (dim=1) instead of the logits di-
mension (dim=-1) when calculating the prediction loss
(cf. Lines 49 and 51 in Algorithm A). The authors have ac-
knowledged and removed this bug, and further developed
UNO v2 with 1) stronger image augmentations, and 2) more
training epochs (500, originally 200), which indeed outper-
forms original UNO on CIFAR100-20 and CIFAR100-50
by a large margin. We refer the reader to this GitHub issue
page3 for more details.

Since our proposed ComEx was built upon original
UNO, while the time did not allow us to migrate our model
to computationally expensive UNO v2, we provide here the
reproduced results of original UNO with bug removed. In
particular, we found that its default hyperparameters are less
optimal after bug removed, and thus we rerun the experi-
ments with the same hyperparameters used in our ComEx,
yielding better results. We report here the reproduced re-
sults (marked with “Reprod.”) as well as the ones copied
from their paper (“Orig.”) on CIFAR10, CIFAR100-20 and
CIFAR100-50 in Tabs. A to C, from which we can observe
the authentic improvement of our proposed ComEx against
the current state-of-the-art UNO under both task-aware and
task-agnostic evaluations.

Concerning the high functionality of the bug, a rational
explanation could be that normalizing at a wrong dimen-
sion actually increases the difficulty of learning both base
and novel classes, which 1) encourages the model to focus
more on the novel classes by 2) alleviating the over-fitting
issue towards the base classes that are much easier to learn
due to accurate and consistent training targets. This over-
fitting issue is more obvious on CIFAR100-20 in Tab. B,
where more base classes are involved. In contrast, ComEx
is able to balance between base and novel classes thanks to
1) the collaboration of experts and 2) the strong learning
signal for novel classes from local aggregation. This phe-
nomenon, again, suggests that we should not blindly focus
on the novel set performance, but should take into consid-
eration both base and novel classes, which is the essence to
let GNCD stand out from unsupervised clustering.

C.2. Results on CIFAR100-70

We further evaluate our proposed ComEx on an imbal-
anced data split setting that involves more novel classes,
namely CIFAR100-70, containing 30 base classes and 70
novel classes. The evaluation results are shown in Tab. D.
From Tabs. A to D we can observe that our proposed
ComEx is able to produce robust GNCD results, consis-
tently outperforming the current state-of-the-art UNO.

3https://github.com/DonkeyShot21/UNO/issues/4

Protocol → Task-agnostic -aware

Method ↓ Base Novel All Novel

UNO [6] 70.0 38.1 47.7 38.5±1.4
ComEx (Ours) 73.5 41.5 51.1 41.8±0.7

Table D. Comparison with UNO [6] on CIFAR100-70. Results
are reported in classification/clustering accuracy (%) using task-
agnostic (b1) and task-aware (a1) evaluation protocols.

D. Parameter Analysis
We study the sensitivity of queue size Nq and α in

Eq. (6), as shown in Fig. A. The experiments are conducted
on CIFAR100-50 with varying Nq or α by setting all the
other hyperparameters to their default.
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Figure A. Parameter sensitivity analysis of queue size Nq and α
in Eq. (6). We use the task-agnostic (b1) evaluation protocol, and
report here the accuracy of “All”.

From Fig. A we can observe that a large queue size does
not always bring about better performance. The reason
can be that a moderate size should provide enough diver-
sity since all Nq elements are used in a soft way, different
from selecting k-NNs [12] that benefits from a larger queue.
However, carefully tuning the hyperparameters (such as
temperature τ in Eq. (5)) for a larger queue may arguably
further increase the performance, but we intended to use a
small queue size for computational efficiency. As to α, the
performance reaches optimal when α=0.5, suggesting that
equally treating global-to-local and local-to-local regular-
ization should maximize the learning efficiency.

E. More Discussions
E.1. Limitations

Our proposed ComEx assumes a known number of novel
classes. This assumption does not always hold in real-
world scenarios where novel classes are continuously show-
ing up. Although we can resort to the off-the-shelf tool [7]
to estimate the number of novel classes beforehand, it re-
mains an open problem to integrate class number estima-
tion into an end-to-end GNCD training. Another limita-
tion is the increased computational requirement. Although
this should be unnoticeable in most cases since experts are
only shallow-layer MLPs, it can still make a difference on
computation-limited equipment like smartphones and other

https://github.com/DonkeyShot21/UNO/issues/4


portable devices. We would like to see these limitations as
the future direction, aiming for a flexible and light-weighted
GNCD solution.

E.2. Negative Societal Impact

Our proposed approach is designed to recognize both
known and unknown classes, which benefits the deployment
on systems dealing with possible new classes. As devel-
oped based on the curated data, our proposed method may
not work as expected on real-world data that poses more
noise and diversity. Putting too much faith in its predictions
can result in grave consequence under life-critical scenar-
ios, such as medical diagnosis and autonomous driving. In
view of this, a stand-alone validation before any real-world
deployment should be necessary.
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Algorithm A Core implementation of ComEx, PyTorch-like.
1 # load two batches from two sets (N_b, N_n samples)
2 for x_b, x_n in zip(base_loader, novel_loader):
3 # get two views of each using two augmentations
4 x_b1, x_b2 = t1(x_b), t2(x_b)
5 x_n1, x_n2 = t1(x_n), t2(x_n)
6
7 # extract visual features of two views
8 # z_b: [2, N_b, d_], z_n: [2, N_n, d_], d_: feat dim
9 z_b = image_encoder(cat([x_b1.unsqueeze(0),

10 x_b2.unsqueeze(0)], dim=0))
11 z_n = image_encoder(cat([x_n1.unsqueeze(0),
12 x_n2.unsqueeze(0)], dim=0))
13 z = cat([z_b, z_n], dim=1) # [2, N_b+N_n, d_]
14
15 # get expert outputs and low-dim feats; C_b/n: cls num
16 batch_y_b = batch_expert_b(z_b) # [2, N_b, C_b+C_n]
17 batch_z_n = batch_expert_n_(z_n) # [2, N_n, d]
18 batch_y_n = batch_expert_n(batch_z_n)#[2,N_n, C_b+C_n]
19
20 class_y_b = class_expert_b(z) # [2, N_b+N_n, C_b]
21 class_z_n = class_expert_n_(z) # [2, N_b+N_n, d]
22 class_y_n = class_expert_n(class_z_n)#[2,N_b+N_n, C_n]
23
24 mean_z_n = (batch_z_n + class_z_n[:, N_b:, :]) / 2
25
26 # create targets for x_b and x_n
27 target_b = one_hot(ground_truth_b) # [N_b, C_b]
28 target = zeros(2, N_b+N_n, C_b+C_n)
29 for i in range(2):
30 target[i, :N_b, :C_b]= target_b
31 target[i, N_b:, C_b:]= (sk(batch_y_n[i, :, C_b:])+
32 sk(class_y_n[i, N_b:, :]))/2
33
34 # stack into queue as queue_z_n, queue_tar_n; size N_q
35 # queue_z_n: [2, N_q, d], queue_tar_n: [2, N_q, C_n]
36 queuing(mean_z_n, target[:, N_b:, C_b:])
37
38 # calculate sim weighted neighbor target [2, N_n, C_n]
39 sim = einsum("vnd,vqd->vnq", mean_z_n, queue_z_n)
40 sim = softmax(sim / temperature, dim=-1)
41 neighbor_tar = einsum("vnq,vqc->vnc",sim, queue_tar_n)
42
43 # final training target for x_n
44 target[:, N_b:, C_b:] = alpha * target[:, N_b:, C_b:]+
45 (1-alpha) * neighbor_tar
46 target[:, N_b:, C_b:] = sharpen(target[:, N_b:, C_b:])
47
48 # gather predictions from four experts
49 batch_pred = cat([batch_y_b, batch_y_n], dim=1)
50 batch_pred = softmax(batch_pred / temperature, dim=-1)
51 class_pred = cat([class_y_b, class_y_n], dim=-1)
52 class_pred = softmax(class_pred / temperature, dim=-1)
53
54 # calculate swap prediction losses
55 batch_loss = -mean(target[0] * log(batch_pred[1])+
56 target[1] * log(batch_pred[0])) / 2
57 class_loss = -mean(target[0] * log(class_pred[1])+
58 target[1] * log(class_pred[0])) / 2
59
60 # calculate regularization loss on batch experts
61 reg_loss = (norm(batch_y_b[:, :, C_b:])+
62 norm(batch_y_n[:, :, :C_b])) / 2
63
64 # total loss
65 loss = batch_loss + class_loss + reg_loss
66
67 # Sinkhorn-Knopp algorithm
68 @ torch.no_grad()
69 def sk(logits, eps=0.05, iters=3):
70 Y = exp(logits / eps).T
71 Y /= sum(Y)
72 K, B = Y.shape
73 u, r, c = zeros(K), ones(K)/K, ones(B)/B
74 for _ in range(iters):
75 u = sum(Y, dim=1)
76 Y *= (r / u).unsqueeze(1)
77 Y *= (c / sum(Y, dim=0)).unsqueeze(0)
78 return (Y / sum(Y, dim=0, keepdim=True)).T
79
80 # reduce entropy of probability distribution
81 def sharpen(prob, p=0.5):
82 sharpened = prob ** (1. / p)
83 sharpened /= sum(sharpened, dim=-1, keepdim=True)
84 return sharpened
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