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A. Datasets

In this section, we introduce the fine-grained datasets
with geolocation and dates in detail. Notably, we visual-
ize the data distribution as a heatmap on the iNaturalist and
YFCC100M-GEO100 datasets to depict the geographical
information (Fig. S1).

A.l. iNaturalist

We perform most of the experiments on the iNaturalist
2017, 2018, and 2021 [17, 18] datasets with geographical
and temporal information from the fine-grained image clas-
sification challenge at FGVC (fine-grained visual catego-
rization). The iNaturalist datasets contain various species
photographed by the public and then identified and anno-
tated by experts at [5]. The iNaturalist 2017 dataset has
579,184 training data and 95,986 validation data with 5,089
categories, while the iNaturalist 2018 dataset has 437,513
and 24,426 images for training and validation within 8,142
labels. The latest iNaturalist 2021 dataset has 2,686,843
training data points in one of its subsets, i.e., 500,000
images marked as the iNaturalist 2021 mini dataset, and
100,000 images for validation with 10,000 categories.

A.2. YFCC100M

Authorized by Flickr, the YFCC100M [15] dataset con-
sists of 100 million images where approximately 49 million
images are annotated with geographical information, e.g.,
latitude and longitude. Several works [1,11,14] have chosen
more qualified and illustrative images to form YFCC100M
subsets. [14] selects the top 100 classes according to loca-
tion sensitivity and forms the YFCC100M-GEO100 dataset.
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Figure S1. The geographical distribution heatmap of the iNatural-
ist and YFCC100M-GEO100 datasets.

It contains 88,986 images and is then split into 86,986 train-
ing data and 2,000 validation data, i.e., 20 images per class
for 100 categories in our experiments. In GeoNet [I], la-
bels of YFCC100M that are related to the corresponding
species within the iNaturalist 2017 dataset are collected to
form the YFCC100M-Geolocated-iNat2017species dataset.
There are 36,143 images in total, with 4,472 categories,
where each label has at least one instance. Notably, we use
the YFCC100M-GEO100 dataset for our experiments.

B. More Training/Test Details
B.1. Training

During training, we apply a random crop of 224x224
pixels, a random horizon flip [13], Mixup [20], and label
smoothing to the inputs as data augmentations. All CNN



Backbone ‘ Rirain

Reest Ten-crop ‘ Acc (%)

SK-101 224 | 224 91.397
SK-101 224 | 384 92.028
SK-101 224 | 256,288, 320, 352, 384 v 92.609
SK-101 384 | 448,480,512, 544,576 v 93.101
SK-101 448 | 512,544,576, 608, 640 v 93.712
BoT-152 224 | 256, 288, 320, 352, 384 v 91.930
BoT-152 384 | 448,480,512, 544, 576 v 92.379
Swin-Large | 224 | 224 v 92.357
PVT-Large 224 | 256, 288, 320, 352, 384 v 92.879
Ensemble 94.750

Table S1. Our model results in FGVCS8 [2] on the iNaturalist 2021
dataset. “Ryain” and “Riesi” denote the training and testing reso-
lution, respectively. SK: SK-Res2Net [3, 7]. BoT: BoTNet [12].
Swin: Swin Transformer [8]. PVT: [19]. Ensemble: The ensem-
ble result including models with an accuracy higher than 91.00%.

backbone networks are trained using SGD with a momen-
tum of 0.9, a weight decay of 1 x 10~*, and 8 GPUs with
a mini-batch size of 64 on each to optimize models. The
learning rate is set to 4 x 10~2 with a linear warmup [4] for
two epochs and a cosine decay schedule [©]. To optimize
models for Transformer backbones, we use AdamW [10]
with a momentum of 0.9, a weight decay of 5 x 1072,
and a mini-batch size of 32, with an initial learning rate
of 2 x 10~*. The augmentation follows the descriptions in
PVT [19]. We train 60 epochs for the iNaturalist 2021 full
dataset and 90 epochs for other datasets.

B.2. Inference

During inference, a center crop is applied to the image
as data augmentation. The testing resolution is aligned with
the training phase. For all multimodal methods, both im-
ages and additional information are utilized for evaluation.

C. More Details for FGVCS8 Competition

During the FGVC8 competition [2], we leverage several
powerful CNN [3,7, 12] and Transformer [8, 19] models as
the backbones of our framework. The training and testing
settings are illustrated in Sec.B. We also evaluate models us-
ing the multi-scale strategy, where R has multiple values.
As indicated by FixRes [16], a higher resolution in testing
than in the training phase would improve the accuracy. We
only apply Ten-crop [6] as a post-processing strategy to the
Swin Transformer [8] since it requires fixed model input.

D. Re-implementation of former works

We follow the official repository! to reproduce Pri-
orsNet [ 1 1]. This method first trains a separate CNN model
based on solely images. Then it additionally trains a loca-
tion encoder, a fully-connected neural network consisting of
an input layer, followed by multiple residual layers, and a

Thttps://github.com/macaodha/geo_prior

Method ‘ Batch ‘ Ir Sampler ‘ N/C ‘ Acc (%)
1024 [ 5x107* CB 100 | 80.246
2048 | 1x 1073 CB 100 | 80.275
4096 | 2x 1073 CB 100 | 80.302
1024 | 5x 1074 CB 50 80.330
PriorsNet [11] | 2048 | 1x 1073 CB 50 80.289
4096 | 2x 1073 CB 50 80.302
1024 | 5x 1074 IB - 80.294
2048 | 1x 1073 1B - 80.271
2048 | 2x 1073 1B - 80.288
PriorsNet [117* | 1024 | 5x 10~* CB 50 83.600
Dynamic MLP (ours) 84.694

Table S2. Comparisons of different batch sizes, learning rates, and
samplers on the iNaturalist 2021 mini dataset. CB: Class-balanced
sampler. IB: Instance-balanced sampler. “N / C” is the image
number per class for the class-balanced sampler. *The location
prior of the full dataset is used to promote the prediction for the
mini dataset (not allowed essentially).

final output embedding layer. Refer to detailed training set-
tings in PriorsNet [1 1] for more information. Specifically,
the image-only model is irrelevant to the core implemen-
tation of PriorsNet, i.e., the location encoder, which only
takes as input the locations and dates. Further, the training
pipeline is available in the codebase. In our experiments,
the MLP backbone of the multimodal path in our dynamic
MLP is aligned with the location encoder in PriorsNet for a
fair comparison. Next, a unified image classifier based on
the popular backbone is well-trained on image data. In the
case where optimal training settings are different for multi-
ple datasets, we conduct a series of ablation studies on the
hyperparameters of the location encoder in PriorsNet. Of-
ficially, the location encoder is trained with a batch size of
1024 and a learning rate of 5 x 10~* on one GPU. A class-
balanced (CB) sampler is used to counteract the imbalanced
nature of long-tailed datasets where the image number per
class is set to 100 by default. Considering the iNaturalist
2021 dataset is class-balanced, we also attempt to use an
instance-balanced (IB) sampler for the data loader. The fi-
nal results of PriorsNet [1 1] and our dynamic MLP are re-
ported in Table S2.

Next, we elaborate on our re-implementation of the
GeoNet [ 1], with reference to the official repository” and the
baseline’ they have compared. Specifically, we refer to the
post-processing strategy that achieves the highest results re-
ported in the paper. The post-processing models are trained
with a learning rate of 0.02 without decay, based on a well-
pretrained image-only model. Since the fine-tune epoch is
not specified, we train the network until no further perfor-
mance improvement can be obtained, which is 90 epochs
specifically. As shown in Fig. S2, the best performances are
achieved before 60 epochs for iNaturalist 2017, 2018, and
2021 [17, 18] generally.

Zhttps://github.com/visipedia/fg_geo
3https://github.com/richardaecn/cvpr18-inaturalist-transfer
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Figure S2. The top-1 accuracy of GeoNet [1] on iNaturalist 2017,
2018, and 2021 [17, 18]. Note that the initial accuracy is inherited
from the image-only pretrained models.

ResNet-50 ‘ #Params ‘ Flops ‘ YFCC ‘ iNat18

Attenion (Q: img, K,V: geo-tem) 48.1 M 41G | 52.150 | 77.282
Attenion (Q: geo-tem, K,V:img) | 48.1M | 4.1G | 52.325 | 78.093
Attenion (Q,K,V: concat both) 49.6M | 4.1G | 52.550 | 77.340
Dynamic MLP (ours) 474 M 4.1G | 53.200 | 78.220

Table S3. Comparisons to the scaled dot-product attention variants
on YFCC and iNaturalist 2018 under ResNet-50 backbone.

E. More Experimental Results
E.1. Comparison with Attention Module

Taking image and geo-temporal feature vectors as inputs,
we implement the scaled dot-product attention whilst keep-
ing all other MLP structures the same with dynamic MLP.
In the first row of Table S3, we set the image feature as Q,
geo-temporal feature as K and V, and exchange their posi-
tions in the second row. In the third row, we use their con-
catenation as Q,K, and V. It is observed that the proposed
dynamic MLP is more accurate.

E.2. More Results on Fusion Strategies

Beyond Table 6, we show more experimental results on
YFCC and iNaturalist 2018 under ResNet-50 backbone in
Table S4, where our method achieves all the best. We also
conduct an extra ablation study to compare all methods un-
der the exact same MLP structures in Table S5, where we
only change the mat-multiply to other operations. It is ob-
served that dynamic MLP still keeps its superiority.

E.3. Individual Benefits of Additional Information

Table S6 shows the individual gain of geographi-
cal/temporal information on the iNaturalist 2018 and 2021
mini datasets under SK-Res2Net-101 backbone, where the
geographical information makes a major contribution to the
overall improvements.

Backbone | Method #Params ‘ Flops ‘ YFCC ‘ iNat18

Concatenation™ 474M | 41G | 51.050 | 76.537
R-50 Addition* 474M | 41G | 50950 | 77.139
Multiplication* 474M | 41G | 52.050 | 76.394
Dynamic MLP (ours) | 474M | 41G | 53.200 | 78.220
Concatenation* 70.0M | 89G | 55.100 | 81.892
SK-101 Addition* 700M | 89G | 54.650 | 82.334
Multiplication* 700M | 89G | 54.450 | 81.151
Dynamic MLP (ours) | 70.0M | 89G | 56.800 | 83.673

Table S4. Comparisons to other fusion strategies under the same
complexity. R-50:ResNet-50. SK-101: SK-Res2Net-101.

ResNet-50 ‘ #Params ‘ Flops ‘ YFCC ‘ iNat18
Concatenation 474M | 41G | 52.100 | 77.585
Additiont 474M | 4.1G | 52.750 | 77.569
Multiplication 474M | 41G | 52.500 | 77.528
Dynamic MLP (ours) | 474M | 41G | 53.200 | 78.220

Table S5. Comparisons to other fusion strategies under the same
MLP structures on iNaturalist 2018 under ResNet-50 backbone.

Geo. ‘ Tem. ‘ iNat18 ‘ iNat21
- - 74.150 76.102
v 83.624 (+9.47) | 84.310 (+8.21)

v 75.493 (+1.34) | 76.821 (+0.72)
v v 83.673 (+9.52) | 84.694 (+8.59)

Table S6. Ablation study on individual gain of geographi-
cal/temporal information on iNaturalist 2018 and 2021 mini un-
der SK-Res2Net-101 backbone. Geo.: Geographical information.
Tem.: Temporal information.

Baseline Add Concat Ours Baseline Add Concat Ours

Figure S3. The visualization of the activation heatmap on the im-
ages under the ground-truth label. Our methods can precisely lo-
cate the semantically meaningful regions, especially when the im-
age is more complicated.

F. More Analysis for Dynamic MLP
F.1. Visualization of the Activation Map

In Fig. S3, we visualize the activation map under the
ground-truth label between the previous works and dynamic
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Figure S4. Comparisons of the top-1 accuracy per category on the
iNaturalist 2021 dataset among various methods. Dynamic MLP
achieves superior performance in the majority of categories.

MLP using CAM [21]. It demonstrates that dynamic MLP
can learn more precise, concentrated, and reasonable activa-
tion maps on images, which potentially benefits the image
representation under the guidance of extra information.

F.2. Accuracy per Categories

Fig. S4 indicates the top-1 accuracy for each category
under various methods on the iNaturalist 2021 dataset. For
better visualization, we rank the categories by the accuracy
of the baseline, from low to high, and average the accuracy
of 100 adjacent categories. Since each label in the iNatu-
ralist 2021 dataset contains 10 images, Fig. S4 presents a
stepped curve. Our dynamic MLP boosts the performance
for most of the categories, which is typically obvious on
the hard labels (low accuracy in the baseline). Notably, all
methods that utilize the additional information produce a
few wrong predictions on instances that are correctly clas-
sified by image-only models, which indicates our method
can still be improved further.
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