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A. Datasets

In this section, we introduce the fine-grained datasets

with geolocation and dates in detail. Notably, we visual-

ize the data distribution as a heatmap on the iNaturalist and

YFCC100M-GEO100 datasets to depict the geographical

information (Fig. S1).

A.1. iNaturalist

We perform most of the experiments on the iNaturalist

2017, 2018, and 2021 [17, 18] datasets with geographical

and temporal information from the fine-grained image clas-

sification challenge at FGVC (fine-grained visual catego-

rization). The iNaturalist datasets contain various species

photographed by the public and then identified and anno-

tated by experts at [5]. The iNaturalist 2017 dataset has

579,184 training data and 95,986 validation data with 5,089

categories, while the iNaturalist 2018 dataset has 437,513

and 24,426 images for training and validation within 8,142

labels. The latest iNaturalist 2021 dataset has 2,686,843

training data points in one of its subsets, i.e., 500,000

images marked as the iNaturalist 2021 mini dataset, and

100,000 images for validation with 10,000 categories.

A.2. YFCC100M

Authorized by Flickr, the YFCC100M [15] dataset con-

sists of 100 million images where approximately 49 million

images are annotated with geographical information, e.g.,

latitude and longitude. Several works [1,11,14] have chosen

more qualified and illustrative images to form YFCC100M

subsets. [14] selects the top 100 classes according to loca-

tion sensitivity and forms the YFCC100M-GEO100 dataset.
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Figure S1. The geographical distribution heatmap of the iNatural-

ist and YFCC100M-GEO100 datasets.

It contains 88,986 images and is then split into 86,986 train-

ing data and 2,000 validation data, i.e., 20 images per class

for 100 categories in our experiments. In GeoNet [1], la-

bels of YFCC100M that are related to the corresponding

species within the iNaturalist 2017 dataset are collected to

form the YFCC100M-Geolocated-iNat2017species dataset.

There are 36,143 images in total, with 4,472 categories,

where each label has at least one instance. Notably, we use

the YFCC100M-GEO100 dataset for our experiments.

B. More Training/Test Details

B.1. Training

During training, we apply a random crop of 224×224

pixels, a random horizon flip [13], Mixup [20], and label

smoothing to the inputs as data augmentations. All CNN



Backbone Rtrain Rtest Ten-crop Acc (%)

SK-101 224 224 91.397

SK-101 224 384 92.028

SK-101 224 256, 288, 320, 352, 384 ✓ 92.609

SK-101 384 448, 480, 512, 544, 576 ✓ 93.101

SK-101 448 512, 544, 576, 608, 640 ✓ 93.712

BoT-152 224 256, 288, 320, 352, 384 ✓ 91.930

BoT-152 384 448, 480, 512, 544, 576 ✓ 92.379

Swin-Large 224 224 ✓ 92.357

PVT-Large 224 256, 288, 320, 352, 384 ✓ 92.879

Ensemble 94.750

Table S1. Our model results in FGVC8 [2] on the iNaturalist 2021

dataset. “Rtrain” and “Rtest” denote the training and testing reso-

lution, respectively. SK: SK-Res2Net [3, 7]. BoT: BoTNet [12].

Swin: Swin Transformer [8]. PVT: [19]. Ensemble: The ensem-

ble result including models with an accuracy higher than 91.00%.

backbone networks are trained using SGD with a momen-

tum of 0.9, a weight decay of 1 × 10
−4, and 8 GPUs with

a mini-batch size of 64 on each to optimize models. The

learning rate is set to 4× 10
−2 with a linear warmup [4] for

two epochs and a cosine decay schedule [9]. To optimize

models for Transformer backbones, we use AdamW [10]

with a momentum of 0.9, a weight decay of 5 × 10
−2,

and a mini-batch size of 32, with an initial learning rate

of 2 × 10
−4. The augmentation follows the descriptions in

PVT [19]. We train 60 epochs for the iNaturalist 2021 full

dataset and 90 epochs for other datasets.

B.2. Inference

During inference, a center crop is applied to the image

as data augmentation. The testing resolution is aligned with

the training phase. For all multimodal methods, both im-

ages and additional information are utilized for evaluation.

C. More Details for FGVC8 Competition

During the FGVC8 competition [2], we leverage several

powerful CNN [3, 7, 12] and Transformer [8, 19] models as

the backbones of our framework. The training and testing

settings are illustrated in Sec.B. We also evaluate models us-

ing the multi-scale strategy, where Rtest has multiple values.

As indicated by FixRes [16], a higher resolution in testing

than in the training phase would improve the accuracy. We

only apply Ten-crop [6] as a post-processing strategy to the

Swin Transformer [8] since it requires fixed model input.

D. Re-implementation of former works

We follow the official repository1 to reproduce Pri-

orsNet [11]. This method first trains a separate CNN model

based on solely images. Then it additionally trains a loca-

tion encoder, a fully-connected neural network consisting of

an input layer, followed by multiple residual layers, and a

1https://github.com/macaodha/geo prior

Method Batch lr Sampler N / C Acc (%)

PriorsNet [11]

1024 5× 10
−4 CB 100 80.246

2048 1× 10
−3 CB 100 80.275

4096 2× 10
−3 CB 100 80.302

1024 5× 10
−4 CB 50 80.330

2048 1× 10
−3 CB 50 80.289

4096 2× 10
−3 CB 50 80.302

1024 5× 10
−4 IB – 80.294

2048 1× 10
−3 IB – 80.271

2048 2× 10
−3 IB – 80.288

PriorsNet [11]* 1024 5× 10
−4 CB 50 83.600

Dynamic MLP (ours) 84.694

Table S2. Comparisons of different batch sizes, learning rates, and

samplers on the iNaturalist 2021 mini dataset. CB: Class-balanced

sampler. IB: Instance-balanced sampler. “N / C” is the image

number per class for the class-balanced sampler. *The location

prior of the full dataset is used to promote the prediction for the

mini dataset (not allowed essentially).

final output embedding layer. Refer to detailed training set-

tings in PriorsNet [11] for more information. Specifically,

the image-only model is irrelevant to the core implemen-

tation of PriorsNet, i.e., the location encoder, which only

takes as input the locations and dates. Further, the training

pipeline is available in the codebase. In our experiments,

the MLP backbone of the multimodal path in our dynamic

MLP is aligned with the location encoder in PriorsNet for a

fair comparison. Next, a unified image classifier based on

the popular backbone is well-trained on image data. In the

case where optimal training settings are different for multi-

ple datasets, we conduct a series of ablation studies on the

hyperparameters of the location encoder in PriorsNet. Of-

ficially, the location encoder is trained with a batch size of

1024 and a learning rate of 5× 10
−4 on one GPU. A class-

balanced (CB) sampler is used to counteract the imbalanced

nature of long-tailed datasets where the image number per

class is set to 100 by default. Considering the iNaturalist

2021 dataset is class-balanced, we also attempt to use an

instance-balanced (IB) sampler for the data loader. The fi-

nal results of PriorsNet [11] and our dynamic MLP are re-

ported in Table S2.

Next, we elaborate on our re-implementation of the

GeoNet [1], with reference to the official repository2 and the

baseline3 they have compared. Specifically, we refer to the

post-processing strategy that achieves the highest results re-

ported in the paper. The post-processing models are trained

with a learning rate of 0.02 without decay, based on a well-

pretrained image-only model. Since the fine-tune epoch is

not specified, we train the network until no further perfor-

mance improvement can be obtained, which is 90 epochs

specifically. As shown in Fig. S2, the best performances are

achieved before 60 epochs for iNaturalist 2017, 2018, and

2021 [17, 18] generally.

2https://github.com/visipedia/fg geo
3https://github.com/richardaecn/cvpr18-inaturalist-transfer

https://github.com/macaodha/geo_prior
https://github.com/visipedia/fg_geo
https://github.com/richardaecn/cvpr18-inaturalist-transfer
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Figure S2. The top-1 accuracy of GeoNet [1] on iNaturalist 2017,

2018, and 2021 [17, 18]. Note that the initial accuracy is inherited

from the image-only pretrained models.

ResNet-50 #Params Flops YFCC iNat18

Attenion (Q: img, K,V: geo-tem) 48.1 M 4.1 G 52.150 77.282

Attenion (Q: geo-tem, K,V: img) 48.1 M 4.1 G 52.325 78.093

Attenion (Q,K,V: concat both) 49.6 M 4.1 G 52.550 77.340

Dynamic MLP (ours) 47.4 M 4.1 G 53.200 78.220

Table S3. Comparisons to the scaled dot-product attention variants

on YFCC and iNaturalist 2018 under ResNet-50 backbone.

E. More Experimental Results

E.1. Comparison with Attention Module

Taking image and geo-temporal feature vectors as inputs,

we implement the scaled dot-product attention whilst keep-

ing all other MLP structures the same with dynamic MLP.

In the first row of Table S3, we set the image feature as Q,

geo-temporal feature as K and V, and exchange their posi-

tions in the second row. In the third row, we use their con-

catenation as Q,K, and V. It is observed that the proposed

dynamic MLP is more accurate.

E.2. More Results on Fusion Strategies

Beyond Table 6, we show more experimental results on

YFCC and iNaturalist 2018 under ResNet-50 backbone in

Table S4, where our method achieves all the best. We also

conduct an extra ablation study to compare all methods un-

der the exact same MLP structures in Table S5, where we

only change the mat-multiply to other operations. It is ob-

served that dynamic MLP still keeps its superiority.

E.3. Individual Benefits of Additional Information

Table S6 shows the individual gain of geographi-

cal/temporal information on the iNaturalist 2018 and 2021

mini datasets under SK-Res2Net-101 backbone, where the

geographical information makes a major contribution to the

overall improvements.

Backbone Method #Params Flops YFCC iNat18

R-50

Concatenation* 47.4 M 4.1 G 51.050 76.537

Addition* 47.4 M 4.1 G 50.950 77.139

Multiplication* 47.4 M 4.1 G 52.050 76.394

Dynamic MLP (ours) 47.4 M 4.1 G 53.200 78.220

SK-101

Concatenation* 70.0 M 8.9 G 55.100 81.892

Addition* 70.0 M 8.9 G 54.650 82.334

Multiplication* 70.0 M 8.9 G 54.450 81.151

Dynamic MLP (ours) 70.0 M 8.9 G 56.800 83.673

Table S4. Comparisons to other fusion strategies under the same

complexity. R-50:ResNet-50. SK-101: SK-Res2Net-101.

ResNet-50 #Params Flops YFCC iNat18

Concatenation† 47.4 M 4.1 G 52.100 77.585

Addition† 47.4 M 4.1 G 52.750 77.569

Multiplication† 47.4 M 4.1 G 52.500 77.528

Dynamic MLP (ours) 47.4 M 4.1 G 53.200 78.220

Table S5. Comparisons to other fusion strategies under the same

MLP structures on iNaturalist 2018 under ResNet-50 backbone.

Geo. Tem. iNat18 iNat21

– – 74.150 76.102

✓ 83.624 (+9.47) 84.310 (+8.21)

✓ 75.493 (+1.34) 76.821 (+0.72)

✓ ✓ 83.673 (+9.52) 84.694 (+8.59)

Table S6. Ablation study on individual gain of geographi-

cal/temporal information on iNaturalist 2018 and 2021 mini un-

der SK-Res2Net-101 backbone. Geo.: Geographical information.

Tem.: Temporal information.

Baseline          Add            Concat           Ours Baseline          Add            Concat           Ours

Figure S3. The visualization of the activation heatmap on the im-

ages under the ground-truth label. Our methods can precisely lo-

cate the semantically meaningful regions, especially when the im-

age is more complicated.

F. More Analysis for Dynamic MLP

F.1. Visualization of the Activation Map

In Fig. S3, we visualize the activation map under the

ground-truth label between the previous works and dynamic
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Figure S4. Comparisons of the top-1 accuracy per category on the

iNaturalist 2021 dataset among various methods. Dynamic MLP

achieves superior performance in the majority of categories.

MLP using CAM [21]. It demonstrates that dynamic MLP

can learn more precise, concentrated, and reasonable activa-

tion maps on images, which potentially benefits the image

representation under the guidance of extra information.

F.2. Accuracy per Categories

Fig. S4 indicates the top-1 accuracy for each category

under various methods on the iNaturalist 2021 dataset. For

better visualization, we rank the categories by the accuracy

of the baseline, from low to high, and average the accuracy

of 100 adjacent categories. Since each label in the iNatu-

ralist 2021 dataset contains 10 images, Fig. S4 presents a

stepped curve. Our dynamic MLP boosts the performance

for most of the categories, which is typically obvious on

the hard labels (low accuracy in the baseline). Notably, all

methods that utilize the additional information produce a

few wrong predictions on instances that are correctly clas-

sified by image-only models, which indicates our method

can still be improved further.
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