Supplementary Material: Finding Badly Drawn Bunnies

S.1. Proof for the Lower Bound of Normalised
Softmax in Sec. 3.1 of Main Text

Eq. 2 of the main text speciﬁes the following formulation:
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Eq. 1 to:
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Since e” is a convex function and by Jensen’s inequality
(L% | e® > em iz %), the following holds:
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With SoftPlus log(1+C e *) further a convex function itself
subJected toC' >0 (ie. 237" | log(1l + Ce™) > log(1 +

Cew 2i=171)) Eq. 3 transforms to:
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SN Wf W,, > —C, we then get to the lower bound
i=1j=1,j%#i )
of Lgy,:

Lo > log (1 +(C — 1)6*%”}"(%)”) (5)

S.2. Constraint Proof for the GACL Instantia-
tions in Sec. 3.3 of Main Text

We provide proof here that the proposed four GACL in-
stantiations meet our constraints named after geometry, co-

optimisation and convexity. The precise mathematical for-
mulations of these three constraints have been respectively
defined in the Sec. 3.2 of main text:
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A(gi,0y,) = (1 — g;)scos,, It is easy to prove that
(iii) holds with the first and second derivative of A(g;,0,,)
to g; as:
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We then calculate the derivative with respect to 0,
VoA(gi,0y,) = —(1 —q;)ssinb,, (7

Given our implementation of ¢; € [0.1,0.3], this means 1 —
g; remains positive throughout. With 6, in the range of
[0, ], it becomes evident that (i)(ii) hold.

A(qi,0y,) = scos(q;0,,) The first and second deriva-
tive of A(g;, 0y,) to g; are:

VaA(Gi, 0y,) = —sby, sin(q:0,,) )
V2A(gi,0,,) = =502, cos(q0y,)

Since 595 > 0 and our implementation of g;, 6, ensures
that cos(¢;0,,) > 0, (iii) always holds. We then calculate
the derivative with respect to 6,,:
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Since 579.A(g;, 8,,) remains negative throughout, it is to de-
rive that (i)(ii) hold.

We omit the proof for A(g;,8,,) = scos(0y, + q;)
and A(g;, 0,,) = scos8,, — g;, where similar analysis
can be conducted.

S.3. g; for Quality-Guided Sketch Generation

In this section, we show that g; can be re-purposed as a
plug-and-play quality critic into existing sketch generative
models for quality-guided sketch generation — this produces



the results in the Sec. 4.4 of main text. To our best knowl-
edge, either conditional or unconditional sketch generative
models [2—4, 7] are currently quality unattended. Without
loss of generality, we take SketchRNN [4], the pioneering
sketch generative method that paves the base for many sub-
sequent works as our model choice. SketchRNN takes the
form of a variational auto-encoder [6], with a bidirectional
LSTM as encoder that projects a sequence of sketch points
s into latent embedding z = E(s), and a LSTM decoder
D(-) conditioned on z to reconstruct s. We refer the readers
to the SketchRNN paper for more details.

We portray the problem of quality-guided sketch genera-
tion as an iterative process of latent feature discovery. This
means given s and its initial latent representation zp, we aim
to traverse in the latent space to a target z that is not too far
to zo but with a significantly higher quality score under ¢(-),
which is formulated as:

Ligtent = (Qmaw - Q(D(Z))) + Oé(Z - Z0)2
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where ¢4, corresponds to different u, values under differ-
ent instantiations, o and A are two hyper-parameters con-
trolling relative importance of identity preservation and gra-
dient descent step size.

Non-differentiable point sampling. Eq. 10 requires gra-
dients flowing from ¢(-) back to D(-), which is potentially
problematic in practice as D(-) involves non-differentiable
operation during the sampling of Gaussian Mixture Model
(GMM)' for sketch point generation. Putting formally, sup-
pose the GMM is instantiated with M normal distributions,
this means we need to sample from a categorical vector II of
length M that represents the mixture weights, resulting in
backpropagation discontinuity. We get around this issue by:
(i) Gumbel-Softmax [5], a differentiable approximate sam-
pling mechanism for categorical variables via reparametri-
sation trick. (ii) straight-through gradient estimator [ 1] for
discrete actions in argmax. Combining both turns the once
indifferentiable y = one_hot(argmax(II;)) to:
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Yhard = one,hot(argmax(yso 7t))
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ysoft:(Hlla 127 /]V[> H;:

Ynew = Stop—gradient(yhard - ysoft) + Ysoft

(1D
91,92, .., g are i.i.d samples drawn from Gumbel(0, 1)?,
T is the softmax temperature that interpolates between dis-

"Modelling each sketch point as a Gaussian Mixture Model is observed
in most existing sketch generations works [4,7,8]. This is in contrast to the
single-modal normal distribution that corresponds to common Lo regres-
sion loss for maximum likelihood estimation.

2Gumbel(0, 1) is sampled by first drawing u ~ Uniform(0, 1) and
compute g; = — log(— log(uw)).

crete one-hot-encoded categorical distributions and contin-
uous categorical densities. By replacing y with yy,cq, We
can now proceed Eq. 10 in an end-to-end manner.
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