
Supplementary Material: Finding Badly Drawn Bunnies

S.1. Proof for the Lower Bound of Normalised
Softmax in Sec. 3.1 of Main Text
Eq. 2 of the main text specifies the following formulation:
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Eq. 1 to:
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Since ex is a convex function and by Jensen’s inequality
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With SoftPlus log(1+Cex) further a convex function itself
subjected to C > 0 (i.e. 1
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S.2. Constraint Proof for the GACL Instantia-
tions in Sec. 3.3 of Main Text

We provide proof here that the proposed four GACL in-
stantiations meet our constraints named after geometry, co-

optimisation and convexity. The precise mathematical for-
mulations of these three constraints have been respectively
defined in the Sec. 3.2 of main text:

(i) 5qA(qi,θyi )

5θA(qi,θyi )
> 0

(ii) 5θA(qi, θyi)|qi=q′i ≤ 0

(iii) 52
qA(qi, θyi) ≤ 0

A(qi, θyi) = (1 − qi)s cos θyi It is easy to prove that
(iii) holds with the first and second derivative of A(qi, θyi)
to qi as:

5q A(qi, θyi) = −s cos θyi

52
q A(qi, θyi) = 0

(6)

We then calculate the derivative with respect to θyi :

5θA(qi, θyi) = −(1− qi)s sin θyi (7)

Given our implementation of qi ∈ [0.1, 0.3], this means 1−
qi remains positive throughout. With θyi in the range of
[0, π2 ], it becomes evident that (i)(ii) hold.
A(qi, θyi) = s cos(qiθyi) The first and second deriva-
tive of A(qi, θyi) to qi are:

5qA(qi, θyi) = −sθyi sin(qiθyi)

52
qA(qi, θyi) = −sθ2yi cos(qiθyi)

(8)

Since sθ2yi > 0 and our implementation of qi, θyi ensures
that cos(qiθyi) > 0, (iii) always holds. We then calculate
the derivative with respect to θyi :

5θA(qi, θyi) = −sqi sin(qiθyi) (9)

Since5θA(qi, θyi) remains negative throughout, it is to de-
rive that (i)(ii) hold.

We omit the proof for A(qi, θyi) = s cos(θyi + qi)
and A(qi, θyi) = s cos θyi − qi, where similar analysis
can be conducted.

S.3. qi for Quality-Guided Sketch Generation
In this section, we show that qi can be re-purposed as a

plug-and-play quality critic into existing sketch generative
models for quality-guided sketch generation – this produces
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the results in the Sec. 4.4 of main text. To our best knowl-
edge, either conditional or unconditional sketch generative
models [2–4, 7] are currently quality unattended. Without
loss of generality, we take SketchRNN [4], the pioneering
sketch generative method that paves the base for many sub-
sequent works as our model choice. SketchRNN takes the
form of a variational auto-encoder [6], with a bidirectional
LSTM as encoder that projects a sequence of sketch points
s into latent embedding z = E(s), and a LSTM decoder
D(·) conditioned on z to reconstruct s. We refer the readers
to the SketchRNN paper for more details.

We portray the problem of quality-guided sketch genera-
tion as an iterative process of latent feature discovery. This
means given s and its initial latent representation z0, we aim
to traverse in the latent space to a target z that is not too far
to z0 but with a significantly higher quality score under q(·),
which is formulated as:

Llatent = (qmax − q(D(z))) + α(z − z0)2

z := z − λ5z Llatent
(10)

where qmax corresponds to different uq values under differ-
ent instantiations, α and λ are two hyper-parameters con-
trolling relative importance of identity preservation and gra-
dient descent step size.
Non-differentiable point sampling. Eq. 10 requires gra-
dients flowing from q(·) back to D(·), which is potentially
problematic in practice as D(·) involves non-differentiable
operation during the sampling of Gaussian Mixture Model
(GMM)1 for sketch point generation. Putting formally, sup-
pose the GMM is instantiated with M normal distributions,
this means we need to sample from a categorical vector Π of
length M that represents the mixture weights, resulting in
backpropagation discontinuity. We get around this issue by:
(i) Gumbel-Softmax [5], a differentiable approximate sam-
pling mechanism for categorical variables via reparametri-
sation trick. (ii) straight-through gradient estimator [1] for
discrete actions in argmax. Combining both turns the once
indifferentiable y = one hot(argmax

i
(Πi)) to:

ysoft = (Π′1,Π
′
2, ...Π

′
M ) Π′i =

exp((Πi + gi)/τ)∑M
j=1 exp((Πj + gj)/τ)

yhard = one hot(argmax
i

(ysoft))

ynew = stop gradient(yhard − ysoft) + ysoft
(11)

g1, g2, ..., gM are i.i.d samples drawn from Gumbel(0, 1)2,
τ is the softmax temperature that interpolates between dis-

1Modelling each sketch point as a Gaussian Mixture Model is observed
in most existing sketch generations works [4,7,8]. This is in contrast to the
single-modal normal distribution that corresponds to common L2 regres-
sion loss for maximum likelihood estimation.

2Gumbel(0, 1) is sampled by first drawing u ∼ Uniform(0, 1) and
compute gi = − log(− log(u)).

crete one-hot-encoded categorical distributions and contin-
uous categorical densities. By replacing y with ynew, we
can now proceed Eq. 10 in an end-to-end manner.
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