
Supplemental Materials for
Fine-Grained Object Classification via Self-Supervised Pose Alignment

1. Graph Matching Algorithm

The framework of the proposed graph matching algo-
rithm for parts alignment is presented in Alg. 1. We aims to
align the top N discriminative parts to an unified order.

Algorithm 1: Graph Matching for Parts Alignment
Input: Top N parts representations:

[rp1
, rp2

, ..., rpN
]

Output: Sorted parts representations: e.g.,
[rpi , rpj , ..., rpk

].

1 *Initialize parts centers as empty: c;
2 *Initialize reference matrix as empty: M ∈ RN×N ;

3 for image in samples do
4 Initialize the matching degree: D = 0;
5 Initialize all possible permutations of

[rp1
, rp2

, ..., rpN
];

6 for permutation in possible permutations do
7 if c is empty then
8 Let c = [rp1

, rp2
, ..., rpN

];
9 Update M ;

10 else
11 Arrange [rp1 , rp2 , ..., rpN

] given current
permutation;

12 Compute the correlation matrix: M ′;
13 if sum(M ◦M ′) > D then
14 D = sum(M ◦M ′);
15 Set current permutation as the best;
16 end
17 end
18 end

19 Resort [rp1
, rp2

, ..., rpN
] according to the best

permutation;
20 Update c using exponential moving average:

ct = βct−1 + (1− β)θt;
21 Update M ;
22 end

{α(s)} ŷ(1) ŷ(2) ŷ(3) ŷ(4) ŷ(final)

{0.7, 0.8, 0.9, 1.0} 81.7 87.3 85.8 87.8 88.4
{1.0, 1.0, 1.0, 1.0} 82.1 87.0 85.6 87.3 88.2

Table 1. Accuracy (%) of different predictions on CUB with dif-
ferent label smoothing setting.

2. Ablation Studies

Smoothing Factor {α(s)}. Remember that {α(s)} is
involved for label smoothing during curriculum learning.
To prove its positive role, we further conduct a con-
trastive experiment without employing label smoothing
(i.e., {α(s)} = {1, 1, 1, 1}). Results on CUB of each stage’s
prediction are reported in Table 1. The method using in-
creasing {α(s)} consistently outperforms the method with-
out using label smoothing except on the first output ŷ(1).

Unsupervised Part Alignment (UPA). Since UPA is di-
rectly applied on image representations at each stage when
using curriculum supervision, we plot every intermediate
prediction’s accuracy in the Fig. 1. As the bar graph shows,
most of the results follow a consistent order on compared
datasets: baseline+CS < baseline+CS+FR(w/o UPA) <
baseline+CS+FR(w/ UPA), which demonstrate that UPA
plays an effective role in learning better representation. In
addition, the ensemble prediction ŷ(final) exhibits slightly
better performance than the other predictions ŷ(s), which
verifies our hypothesis that aggregating predictions from
different stages yields a stronger classifier.

UPA’s Influence on Pose Changes. Since it is hard to
obtain the images of the same instance in other poses, we
alternatively flip or rotate the original images to attain this
end. Therefore, we choose the methods Baseline+FR(w/o
UPA) and Baseline+FR(w/o UPA) to see the amplitude of
representation changes when the input images is being ro-
tated or flipped. Results is reported in Table 2. We can see
that, when the input image is changed (i.e., object pose is
changed), the method with UPA shows smaller changes in
object representation compared to the method without UPA
in nearly all rotation and flipping cases. This result verifies
that UPA has an effective role against object pose changes.

Fusion Scheme of Parts Features. Given N parts fea-

1



Figure 1. Stage-wise prediction accuracy of three methods on CUB, CAR and AIR datasets.

Processing UPA Euclidean distance
CUB CAR AIR

flip-x w/o 32.01 26.52 57.35
w 31.69 20.12 55.11

flip-y w/o 207.11 154.36 269.73
w/ 192.89 106.34 234.05

r90 w/o 132.57 170.67 349.46
w/ 123.00 135.25 356.37

r180 w/o 213.84 155.23 274.50
w/ 200.68 106.76 235.06

r270 w/o 131.51 172.66 355.31
w/ 124.68 138.57 367.83

Table 2. The average Euclidean distance between the represen-
tations of original images and rotated/flipped images. The words
flip-x and flip-y represent flipping the input image along the x-
axis and y-axis respectively. The words r90, r180 and r270 denote
rotating the input image anticlockwise by 90◦, 180◦ and 270◦ re-
spectively.

tures, there are other simple and feasible order-invariant
ways to fuse them to obtain a pose-invariant representation.
We consequently construct two methods with different fu-
sion schemes. The first one use average of parts features as
r̂
(s)
im , while the second one use transformer to output r̂(s)im .

As we know, the transformer without using position embed-
ding is invariant to the order of input tokens. Experiment
results are shown in Table 3. The employed transformer
consists of two encoder units and its original output is of
the same shape as the input. We use the average output
tokens as the final output. Remember that our method uses
UPA to resort the parts in a consistent order before applying
MLP to fuse features. It can be seen that our method shows
improvements over the simple average fusion scheme and
is slightly better than the transformer. But note that the pro-
posed UPA+MLP has advantages in calculation and mem-
ory occupation that the transformer.

Parts Number N . The number of discriminative parts N
is an important hyper-parameter of our method. Small N
may forces the backbone to focus on a few regions and re-

Method Accuracy (%)
CUB CAR AIR

Average 90.1 95.1 94.0
Transformer 90.2 95.2 94.2
Ours (UPA+MLP) 90.2 95.4 94.2

Table 3. Comparison of different fusion schemes.

Parts number (N ) 2 3 4 5 6

Accuracy (%)
CUB 88.1 89.9 90.2 90.2 90.0
CAR 93.8 95.0 95.4 95.1 95.2
AIR 91.2 93.6 94.2 94.4 94.3

Table 4. Influence of the number of discriminative parts. Setting
of methods follow the same as baseline+CS+FR(w/ UPA) except
the parts number. The backbone is ResNet50.

sults in not discriminative enough representation. On the
contrary, a large N may bring redundant information to af-
fect the classification accuracy. A single part is not able to
reveal object pose, we thereby conducted experiments with
N ranges from 2 to 5 to see parts number’s effects. Compar-
ison results are reported in the Table 4. Accuracy increases
significantly when N increases from 2 to 4. However, when
N getting larger than 4, the accuracy’s average increase on
three datasets is less than 0. This result can be explained by
the reason that object image has a limit number of salient
parts and if we choose more than a specific number of dis-
criminative parts, background regions or parts of common
patterns will be inevitably selected as discriminative parts.
These non-discriminative parts may have negative effects
on the optimization of network parameters. In general, for
simple objects like the used datasets, it is suitable to set the
parts number as 4 or 5. For more complicated objects, larger
N should be chose by experience.

3. Computation Time
Given the same settings, we list a comparison of training

cost and inference latency in Tab 5. Although P2P-Net has



more parameters and FLOPs during training, but achieves
comparable computational efficiency during testing, owing
to the self-supervised part alignment module as feature reg-
ularization only activated in training.

Model Params (M) FLOPs (G) Time (sec)
ResNet50 [11] 23.92 16.44 0.064/0.034
NTS-Net [41] 29.03 41.91 0.126/0.069
PMG [8] 45.13 37.47 0.270/0.043
API-Net [48] 46.06/42.91 31.53/31.52 0.104/0.054
P2P-Net (ours) 64.09/44.63 75.43/37.47 0.136/0.041

Table 5. Comparison of methods with official codes. Beyond
the API-Net using the ResNet101 backbone, the others use the
ResNet50. Values listed as train/test if they are different.


