
Figure 1. Three main failure cases are presented including rare pose error, missing pose error, and parsing error. Typical failure causes are
red-boxed.

A. More Try-on Results

The extensive results of RT-VTON are given in our
homepage https://lzqhardworker.github.io/
RT-VTON/.

B. Limitations

In Fig. 1, we present the failure cases of our method. The
first row shows a person with huge self-occlusions and com-
plex body intersections. Depth information can be utilized
to enhance the overall understanding of the reference per-
son. In the second row, the elbow of the reference person
is out of the image, which makes the pose map incomplete.
Simply applying other dense pose representations can ame-
liorate this problem. In the last row, the initial semantics
of the reference person are incorrect, where a part of the
clothing region is mis-classified as bottom clothes. Better
semantic parser or distillation trick can be used to improve
this case. Notably, RT-VTON is designed for predicting
more accurate semantic layout given the correct initial
semantics. Error-handling of the pretrained semantic
parser or the pose estimator is not our main focus.

C. Moving Least Squares

To make the problem of Moving Least Squares clear, we
largely follow the presentation as addressed in [5] and ex-
tract the essence for better understanding.

Let p be a set of control points in the image and q the
target control points in the image, where p moves to q after
the transformation. Given a certain point v, we look for the
optimal affine transformation lv(x) which minimizes∑

i

wi |lv (pi)− qi|2 , (1)

where pi and qi are vectors and the weights wi are defined
as

wi =
1

|pi − v|2α
. (2)

The weights wi in this least squares problem depend on
the evaluation point v. Therefore, we get a different trans-
formation lv(x) for each v.

lv(x) consists of two parts: a linear transformation ma-
trix M and a translation T , for lv(x) is an affine transfor-
mation:

lv(x) = xM + T. (3)

We solve for T to get that

T = q∗ − p∗M, (4)

where p and q are weighted centers.

p∗ =

∑
i wipi∑
i wi

,

q∗ =

∑
i wiqi∑
i wi

.

(5)

Based on the above observation, we can replace T with
Equation 3. lv(x) can be rewritten as a linear matrix M ,

lv(x) = (x− p∗)M + q∗. (6)



Figure 2. The intermediate results of our method.

Figure 3. Extensive results regarding intricate neckline and collar structures.

Based on the above formula, the least squares problem
can be redefined as∑

i

wi |p̂iM − q̂i|2 , (7)

where p̂i = pi−p∗ and q̂i = qi−q∗. Then we find an affine

deformation that minimizes Equation 7 by least squares.

M =

(∑
i

p̂Ti wip̂i

)−1∑
j

wj p̂
T
j q̂j . (8)



D. Intermediate Results
We show the intermediate results of RT-VTON in Fig. 2

for better understanding of our overall pipeline. We firstly
remove the face, upper clothes, and arm labels from the ref-
erence semantics to derive partial parse; the original cloth-
ing shape is thus agnostic to the network. Then SGM
predicts the “after-try-on” semantic layout i.e. predicted
semantics, given the target clothes as well as the refer-
ence pose map. With accurate semantic segmentation, we
can adaptively generate and preserve the image contents
by computing the intersection of skin regions, i.e. resid-
ual body. Eventually we combine the predicted semantics,
residual body with the warped clothes to produce the final
try-on results.

E. Results on Collar Types
In order to validate the effectiveness of RT-VTON on

handling intricate collar structures, we show an extensive
visual results in Fig. 3. RT-VTON performs well in captur-
ing the detailed collar shapes.

F. Extra Quantitative Results
Here we give an extra quantitative experiment in Tab. 1

with some recent works without official implementations.
The numbers are directly copied from their papers, which
are thus only for reference.

Table 1. Without the official implementations, we compare the
FID score with their reported values.

Method FID
SieveNet [4] 26.67

ClothFlow [3] 23.68
ZFlow [1] 15.17
RT-VTON 11.66

Structural Similarity (SSIM) [6] and Peak Signal to
Noise Ratio (PSNR) are not used in our experiment for the
following reasons. 1) Since we do not have the ground-truth
images (i.e. reference person wearing the target clothes)
as discussed in [2], FID can best depict the unpaired try-
on quality. 2) SSIM and PSNR are reconstruction metrics,
which are computed by putting on the same clothes of the
reference person. A severe problem for reconstruction met-
rics is that the method which generates trivial identical re-
sult of reference person can score the highest in SSIM and
PSNR.
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