
FvOR: Robust Joint Shape and Pose Optimization for Few-view Object Reconstruction

Supplementary Materials

Zhenpei Yang1 Zhile Ren2 Miguel Angel Bautista2

Zaiwei Zhang1 Qi Shan2 Qixing Huang1

1The University of Texas at Austin 2Apple

1. Technical Details

1.1. Pose Initialization Approaches

FvOR (Ours). We first use a modified ResNet18 to extract

the per-view feature, then those coarse feature maps (at 1

8

input resolution) are fed into the cross-frame attention mod-

ule to perform both self-attention and cross-frame attention.

The resulting feature maps are reshaped and further de-

coded into per-pixel scene coordinate prediction. For each

image, we randomly sample 1000 scene coordinates and

employ OpenCV’s implementation of PnP+RANSAC [2]

with 5000 iterations to get our pose estimation. A diagram

of our pose initialization module is in Fig. 1.

Extreme-Rot. The coarse feature map is passed to

Extreme-Rot’s prediction module [3] to predict a distribu-

tion of the underlying quantity. We use 6 separate prediction

modules for 3 Euler angles and 3 translations along each

axis respectively.

1.2. Shape Optimization Module

Implementation Details. We use a modified version of

ResNet-18(with up-convolution layers and skip connec-

tions) to serve as our feature backbone. It takes input

of an image Ii ∈ R3×h×w and produce a feature map

Fi ∈ Rc×h×w. The 3D Convolutional U-Net consists of 6

down-sampling layers that gradually reduce the spatial res-

olution and then 6 up-sampling layers plus skip connections

to recover the input resolution. The network illustration can

be found in Fig. 2.

1.3. Pose Optimization Module

A diagram of the pose optimization network is in Fig. 3.

Since the core of our pose optimization module is aligning

current geometry with input images, it needs a reasonably

good initial geometry to start with. Hence, we pre-train the

shape module with GT Pose. Then we simulate noisy in-

put geometry (as we will encounter during the test time)

by adding Noise@L1 to the input pose of the shape mod-

ule. We generate this type of geometry on the fly, and we

train the pose refinement module to recover the GT pose

from Noise@L3 perturbation. Note that the shape module

is also fine-tuned (with noisy pose) at this stage. However,

our training of the shape module and pose module is not

end-to-end (as there is no gradient back-propagation from

the pose module to the shape module). We use a smaller

noise level for the shape module as we need it to generate a

highly accurate shape, and we found increasing the training

noise level will hurt its accuracy.

1.4. Alternating Shape Update and Pose Update

As shown in Algorithm 1 of the main paper, our algo-

rithm consists of an outer loop and an inner loop. We alter-

nate between shape and pose update in the outer loop, and

update the pose with fixed shapes in the inner loop. We use

3 outer loop iterations, and 5 inner loop iterations during

the test time. In addition to Lp (defined in Eq 4 of the main

paper), we also added a regularization term Lr:

Lr = λreg

∑

i

∥

∥

∥

(

R̂i t̂i
0 1

)

−

(

R0

i t0i
0 1

)

∥

∥

∥

2

F
,

where R̂i,t̂i and Ri,ti are the current pose estimate and GT

pose for the ith image respectively. This term prevents the

pose drift from the initial pose in future iterations.

1.5. Evaluation Details

As discussed in the main paper, the commonly used eval-

uation in previous works [1,6] does not factor out the align-

ment factor, which will not reflect shape quality faithfully.

Thus, we propose to factor out the alignment before calcu-

lating IoU, Chamfer-L1 and Normal-Consistency scores. To

factor out the alignment factor, we propose to locally align

the prediction and GT to solve for a scale factor s, and rigid

transformation T = (R|t). Taking advantage of the implicit

representation of the prediction(all evaluated methods in the

table use implicit representation), we minimize the follow-

ing loss using PyTorch’s Adam [4] optimizer:

min
s,R,t

∑

xi

|g(s · (Rxi + t))|, (1)

1

Figure 1. A diagram of the pose initialization network architecture of FvOR. We use the predicted scene coordinate to estimate the pose.

Figure 2. Shape optimization module network architecture. For

each query point x, a pixel-aligned image feature fimage is ob-

tained by interpolating each view’s feature map. 3D convolutional

feature f3D is obtained by interpolating 3D feature volume. The

resulting feature vectors are concatenated and pass through 5 fully

connected layers to generate the final signed-distance prediction.

where xi is the surface point sampled from ground truth

mesh. In essence, Eq 1 seeks to find a similarity transfor-

mation that converts the ground truth mesh onto the zero

level set of the prediction.

2. Additional Studies

2.1. Pose Initialization

Per-category Quantitative Results on ShapeNet. We

show the per-category pose initialization on ShapeNet in Ta-

ble 1. Our scene coordinate representation is better than the

other representations for most cases.

Different Number of Views. We test how the performance

will change when given different number of views during

test time. The results can be found in Tab. 3. More views

leads to more accurate pose prediction.

2.2. Shape Module

Quantitative. We show the per-category 3D reconstruction

results on ShapeNet in Table ??. Our shape module achieve

the best-in-class performance across most categories.

More Analysis on Feature Representation. We show in

Table 4 more analysis on feature representation. We tested

different kinds of grid resolution used in building 3D con-

volutional feature. Lower grid resolution significantly de-

creases the training memory requirement, as well as in-

crease the inference speed. We also found that when the

grid resolution is small, then image feature f image have more

salient improvement. This is reasonable since in this case

the grid are too coarse to capture fine-grained details. In

contrast, image feature is not restricted to grid resolution,

thus provide complementary benefits with relatively small

cost.

Generalization. As in 3D43D [1], we conduct a gener-

alization test on our shape module shown in Table 2. We

followed their practice and train our shape module on 3 cat-

egories, and test on the rest 10 categories. Our approach

achieves significant improvement on the generalization over

3D43D [1]. This further demonstrates our design choice.

Different Number of Views. We test how the performance

change when given different number of views during test

time. The results can be found in Fig. 5. More input views

leads to better results.

2.3. Pose Update Module

Effectiveness of learned feature representation. The pose

update module learns a feature representation that is suit-

able for alignment. We compare using the initial feature

representation(before traninig) with using trained feature

representation for alignment in Table 4. In this experiment,

we use a fixed shape generated with a pre-trained shape

module and gt camera pose. And we then perturb the cam-

era pose of each image and run multiple pose update to cor-

rect the camera pose. The learned feature representation

clearly helps the alignment.

References

[1] Miguel Ángel Bautista, Walter Talbott, Shuangfei Zhai, Nitish

Srivastava, and Joshua M. Susskind. On the generalization of

learning-based 3D reconstruction. IEEE Winter Conference

on Applications of Computer Vision (WACV), 2021. 1, 2, 3, 5

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of

Software Tools, 2000. 1

[3] Ruojin Cai, Bharath Hariharan, Noah Snavely, and Hadar

Averbuch-Elor. Extreme rotation estimation using dense cor-

relation volumes. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

14566–14575, 2021. 1, 3

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1

[5] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebas-

tian Nowozin, and Andreas Geiger. Occupancy networks:

Figure 3. A diagram of the pose optimization module. We use a feature backbone (similar to the one used in our pose initialization network)

to extract per-pixel feature map for both rendered object mask and input view. Then we compute the pose update {∆ci,∆ti} by aligning

these two feature maps.

plane bench cabinet car chair display lamp speaker rifle sofa table phone boat mean

p
ix

el
er

ro
r DISN [7] 2.004/0.992 1.390/0.948 1.461/0.740 0.984/0.828 1.267/0.984 4.560/1.122 3.581/2.517 5.477/1.510 2.457/1.088 1.734/0.893 2.273/0.988 2.927/0.864 1.847/1.251 2.459/1.133

Cai et al. [3] 2.065/1.134 1.359/1.223 2.397/1.270 1.207/1.130 1.453/1.168 2.171/1.220 5.099/1.910 4.403/1.296 1.416/1.110 1.536/1.226 2.301/1.265 1.962/1.227 1.911/1.161 2.252/1.257

FvOR-Quat 1.903/0.961 2.032/1.231 2.372/1.186 1.143/0.984 1.985/1.404 7.010/1.638 3.692/2.495 7.013/2.491 1.897/0.979 2.331/1.354 3.285/1.434 3.177/1.491 1.950/1.350 3.061/1.461

FvOR (Ours) 0.748/0.488 0.724/0.406 0.708/0.301 0.530/0.446 0.728/0.533 3.289/0.632 2.464/1.528 3.323/0.820 1.531/0.548 0.831/0.463 1.169/0.350 1.229/0.436 0.969/0.770 1.403/0.594

R
o
t

er
ro

r DISN [7] 4.682/2.304 2.803/1.552 3.199/1.443 1.806/1.547 2.438/1.796 11.506/2.060 11.456/6.976 11.899/2.749 6.401/2.355 2.793/1.466 4.195/1.596 10.338/2.037 4.654/2.438 6.013/2.332

Cai et al. [3] 3.693/1.004 1.170/0.969 3.011/0.997 1.099/0.934 1.613/0.958 3.311/0.910 8.908/2.434 7.662/1.003 2.653/0.959 1.671/0.914 2.878/0.978 2.649/0.950 3.199/0.958 3.348/1.075

FvOR-Quat 4.192/2.213 3.539/2.125 5.520/2.105 1.985/1.763 3.605/2.440 15.827/2.997 11.560/7.346 14.656/5.340 4.572/2.130 3.699/1.999 5.936/2.117 10.436/3.172 4.695/2.612 6.940/2.951

FvOR (Ours) 1.667/1.135 1.368/0.699 1.485/0.424 0.829/0.698 1.217/0.831 8.452/0.933 7.661/4.016 6.574/1.412 4.454/1.617 1.277/0.655 2.056/0.450 3.703/0.890 2.289/1.662 3.310/1.186

T
ra

n
s

er
ro

r DISN [7] 0.024/0.019 0.014/0.012 0.007/0.005 0.013/0.011 0.015/0.011 0.017/0.011 0.022/0.014 0.015/0.011 0.025/0.021 0.012/0.010 0.011/0.007 0.012/0.008 0.024/0.020 0.016/0.012

Cai et al. [3] 0.015/0.009 0.009/0.009 0.010/0.009 0.009/0.009 0.010/0.009 0.011/0.009 0.020/0.012 0.015/0.009 0.012/0.009 0.009/0.009 0.010/0.009 0.011/0.009 0.011/0.009 0.012/0.009

FvOR-Quat 0.028/0.022 0.017/0.015 0.010/0.009 0.016/0.014 0.021/0.016 0.022/0.014 0.025/0.018 0.021/0.015 0.026/0.022 0.017/0.015 0.016/0.011 0.016/0.009 0.030/0.024 0.020/0.016

FvOR (Ours) 0.017/0.012 0.010/0.008 0.006/0.004 0.010/0.009 0.012/0.009 0.012/0.009 0.024/0.015 0.019/0.011 0.023/0.018 0.011/0.008 0.009/0.005 0.010/0.008 0.020/0.017 0.014/0.010

Table 1. Quantitative results on pose estimation on ShapeNet dataset. We show the mean and median pixel error for each cateogry. The

image resolution used here is 224× 224

Category OccNet [5] OccNet† [1, 5] 3D43D [1] FvOR w/ GT Pose

bench 0.288/0.508/0.729 0.147/1.960/0.625 0.463/0.113/0.617 0.581/0.00728/0.8783

cabinet 0.295/0.917/0.674 0.312/1.273/0.655 0.629/0.250/0.844 0.619/0.0142/0.871

display 0.120/2.868/0.560 0.127/3.179/0.534 0.409/0.428/0.770 0.597/0.01156/0.910

lamp 0.100/3.365/0.586 0.138/2.653/0.623 0.369/2.057/0.738 0.486/0.0124/0.8332

speaker 0.315/1.460/0.660 0.333/1.344/0.677 0.627/0.392/0.829 0.675/0.0150/0.875

rifle 0.180/1.866/0.567 0.095/2.610/0.444 0.498/0.115/0.760 0.725/0.0044/0.916

sofa 0.525/0.732/0.776 0.356/1.445/0.663 0.679/0.147/0.858 0.779/0.00862/0.920

table 0.186/1.122/0.694 0.177/1.771/0.700 0.455/0.255/0.827 0.555/0.00941/0.893

phone 0.036/1.588/0.689 0.131/1.457/0.592 0.549/0.184/0.861 0.753/0.00859/0.954

boat 0.347/0.683/0.661 0.256/1.524/0.603 0.521/0.145/0.776 0.642/0.0102/0.858

Mean 0.239/1.511/0.660 0.207/1.922/0.612 0.520/0.409/0.806 0.641/0.010166/0.891

Table 2. Novel category generalization experiments. Each method is trained on car/chair/plane categories and tested on the rest 10

categories. The numbers in each cell are IoU/Chamfer-L1/F-score. OccNet [5] use single view. The rest methods use 5-views. The last

two columns use GT camera poses. The results for OccNet, OccNet† and 3D43D are obtained from [1] thus they do not factor out global

similarity metrics. 3D43D and FvOR w/ GT Pose use ground truth camera pose.

Learning 3d reconstruction in function space. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4460–4470, 2019. 3, 5

[6] Haozhe Xie, Hongxun Yao, Shengping Zhang, Shangchen

Zhou, and Wenxiu Sun. Pix2vox++: multi-scale context-

aware 3d object reconstruction from single and multiple im-

ages. International Journal of Computer Vision (IJCV),

128(12):2919–2935, 2020. 1

[7] Qiangeng Xu, Weiyue Wang, Duygu Ceylan, Radomir Mech,

and Ulrich Neumann. DISN: Deep implicit surface network

Figure 4. Testing the pose update module in isolation by aligning

a fixed shape to images with perturbed camera poses. We show

the percentage of rotation and translation error, as well as the pixel

error after along the LM steps. After end-to-end training, our pose

update module can recover from considerably amount of noise.

3 Views 5 Views* 7 Views 9 Views

Pixel-Error 1.85/0.63 1.40/0.59 1.29/0.59 1.25/0.58

Rotation-Error 4.00/1.21 3.31/1.19 2.87/1.14 2.77/1.14

Translation-Error 0.017/0.011 0.014/0.010 0.014/0.010 0.014/0.010

Table 3. Analysis of the pose initialization module’s performance

under different number of testing views on ShapeNet. The model

is trained using 5 views. More views gives better pose prediction.

Grid Metrics All w/o fimage w/o f3D

64
3

IoU↑ 0.783 0.782 0.718

Chamfer-L1↓ 0.058 0.060 0.082

Inference FPS↑ 9.7 11.0 13.8

Training Mem(GB)↓ 32.1 28.6 22.1

32
3

IoU↑ 0.771 0.765 0.718

Chamfer-L1↓ 0.063 0.065 0.082

Inference FPS↑ 11.0 12.6 13.8

Training Mem(GB)↓ 24.7 19.1 22.0

16
3

IoU↑ 0.754 0.730 0.720

Chamfer-L1↓ 0.068 0.076 0.082

Inference FPS↑ 11.2 12.7 13.9

Training Mem(GB)↓ 22.9 21.0 22.0

Table 4. More analysis on the effect of 3D convolutional represen-

tation and image representation on decoder. We use ShapeNet and

ground truth poses in this experiment. The results are averaged

across all 13 categories. The training memory are calculated with

batch size 12 and image size 224× 224.

Figure 5. This figure shows how the reconstruction results change

w.r.t different number of input views. For each metric we show

mean and median result on ShapeNet chair category. We can see

our 3D module can be adapted to different number of (few-)views

during inference.

for high-quality single-view 3d reconstruction. Advances

in Neural Information Processing Systems (NeurIPS), pages

492–502, 2019. 3

[8] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan

Atzmon, Basri Ronen, and Yaron Lipman. Multiview neural

surface reconstruction by disentangling geometry and appear-

ance. Advances in Neural Information Processing Systems

(NeurIPS), 33, 2020. 5

Img0 Img1 Img2 Img3 Img4
OccNet† [1, 5] IDR [8] FvOR

Figure 6. Qualitative comparison on ShapeNet. On the left we show the five input images. On the right we show the prediction of

OccNet† [1, 5], IDR [8] and FvOR(ours). IDR and FvOR use our predicted camera poses.

Few-view Input Our 3D Reconstruction

Figure 7. We show qualitative results on more categories of FvOR. On the left we show the 5 view inputs, on the right we show 3 perspective

of final reconstructed mesh. FvOR can produce fine-grained reconstruction across all categories.

	. Technical Details
	. Pose Initialization Approaches
	. Shape Optimization Module
	. Pose Optimization Module
	. Alternating Shape Update and Pose Update
	. Evaluation Details

	. Additional Studies
	. Pose Initialization
	. Shape Module
	. Pose Update Module

