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S. Supplementary Material
This supplementary material consists of the following

five parts: an explanation of the smoothness mask gener-
ation (subsection S.1), intermediate results of different de-
formation degrees (subsection S.2), potential applications
(subsection S.3), a description of our evaluation interface
for the user study (subsection S.4), and more comparison
results (subsection S.5)

S.1. Smoothness Mask Generation

Relying only on the shape-consistency loss is not enough
because there exist many distinct warp fields that can make
the loss minimized. Due to the lack of guidance on sam-
pling direction, although it can achieve shape matching be-
tween masks, the post-deformation result on the image do-
main may be very random and chaotic, as shown in Fig. S1.
Therefore, we must further restrict the sampling direction of
the warping field to retain the content details of the source
object, to the greatest extent. In this work, we abide by the
deformation rule of an edge-to-edge sampling, which can
make full use of the source content, and propose a mask
smoothness regularization based on it.

Figure S1. The shape-consistency only ensures the shape match-
ing between masks and cannot further restrict the sampling direc-
tion, which may cause chaotic deformation on the image domain.

To achieve the goal of the edge-to-edge sampling, under
the shape-consistency loss, we add a smoothness constraint
on both sides of the target edge (Medge) to the warp field, as
illustrated in Fig. S2. Firstly, the displacement on both sides
of the target edge should be as close as possible. Secondly,

the shape and background areas of the target will sample
from the shape (purple arrow) and background (blue arrow)
areas of the source, respectively. Combined with the two
constraints described above, the target edge region will tend
to sample from the source edge.

Figure S2. By adding a smoothness constraint on both sides of the
target edge(Medge), the target edge region (take brown square area
as example) tend to sample from the source edge.

More specially, we divide the deformation into two parts,
a compressed part (like the handle part of the cup in Fig. S2)
and an expanded part (like the body and bottom part of the
cup). When there is no constraint on the shape-consistency
loss, Fig. S1 shows that the compressed part looks like an
edge truncation and the extended part randomly samples
from the source shape area. To overcome the truncation
problem, we add the edge smoothness mask into the region
for imposing the edge-to-edge sampling in the compressed
part. To avoid the blur problem, we use the smoothness
constraint in the extended part. As a result, we explore the
smoothness mask in the form shown in Fig. S3.

S.2. Intermediate Results of LGW

Since the LGW module generates a prediction sequence,
we expect to reflect the deformation process. Because the
latter warp field produces a larger scale warping, we use
increasing weights to balance the shape-consistency loss
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Figure S3. Given two shapes, we design different smoothness
masks for the two parts of compression (upper right) and expan-
sion (lower right). The smoothness mask in the middle is what we
use in the smoothness regularization.

sequence between the warped source mask and the target
mask. As the latter warp field needs to relax smoothness
requirements more than the former, we employ decreasing
weights to balance the smoothness loss sequence. They are
described as

Lshape =

R∑
r=1

αr∥ωr(Ms)−Mt∥1, (S1)

Lsmooth =

R∑
r=1

βrLsmooth(ωr,M), (S2)

where R is the number of iterations, and we set R = 3 in
our implementation. The increasing weights {αr}3r=1 are
set to {0.1, 0.2, 1}, and the decreasing weights {βr}3r=1 are
set to {0.1, 0.05, 0.01}.

Once trained, the LGW network can be used to generate
warp fields iteratively which become increasingly accurate
with respect to the geometric shape of the target, as shown
in Fig. S4.

Figure S4. Intermediate results {Nr}3r=1 with three warping fields
{ωr}3r=1.

S.3. Potential Applications

In addition to the smoothness regularization applied to
the warp field, we can also restrict the sampling direction
by dividing different corresponding areas into many masks.
As shown in Fig. S5, we expect the specific WARP area
in the colored Mt to be warped from the cyan circle in S.
We achieve it by iterating a warp field based on Lshape and
Lsmooth between Ms and Mt. N is the finally warped re-
sult. So, depending on users’ preferences, they can cus-
tomize the various artistic product, for example, the design
of clothing with a logo in Fig. S5.

Figure S5. Restricting the sampling direction by using colored
masks. Here, we expect the specific WARP area in the cloth to be
warped from the cyan circle in the plate.

S.4. User Study

As described in subsection 4.2 of the main paper, we
conduct a user study to evaluate the effect of the proposed
InST algorithm against the existing methods. We divide the
evaluation into three groups from the perspectives of geo-
metric warping, content maintenance, and their combina-
tion, and each group is set to ten options. The evaluation
interface is partly shown in Fig. S6.

Figure S6. Evaluation Interface

S.5. More Results

Here, more qualitative results are provided to assist the
readers in assessing the effectiveness of our proposed InST
algorithm. We showcase the comparison results from three
aspects like the main paper: (i) geometric warping (Fig. S7,
Fig. S8), (ii) texture transfer (Fig. S9), (iii) their combina-
tion (Figs. S10 and S11).



Figure S7. More visual logo and product design results using the geometric transfer methods, e.g., DST [3], GTST [5] and our InST.
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Figure S8. More visual product design results using the geometric style transfer methods, e.g., DST [3], GTST [5] and our InST.



Figure S9. More content preservation results using the texture style transfer methods, e.g., AdaIN [2], LinearWCT [4] and ArtFlow [1].

Figure S10. More visual logo design results using the geometric and texture style transfer methods, e.g., GTST [5] and our InST.



Figure S11. More visual product design results using the geometric and texture style transfer methods, e.g., GTST [5] and our InST.


