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1. Additional implementation details

For all experiments, the MC module processes the fea-
ture with R1024×7×7 for RGB and Flow modalities, and
R1024 for the Audio modality. k is set to 3. The ratio for
gating bottleneck is r = 16. Dataset-specific details are as
follows:

• U-H dataset

We first extract features using I3D [1] pretrained on Ki-
netics. For each action clip, we extract features from 25
uniformly sampled frames. We use the same strategy as
TSN [13] to choose 5 frames from 25 frames. For training
our CIA model, we apply Adam optimizer [8] with learn-
ing rate 3e-3. We empirically choose λy = 1, λvd = 1
and λfd = 0.5 for the experiments.

• E55 dataset

On E55 dataset, we train I3D backbone together with our
CIA model using Adam optimizer [8] with learning rate
1e-4. We uniformly sample 16 frames as the inputs. We
empirically choose λy = 1, λvd = 1 and λfd = 0.5 for
the experiments.

• E100 dataset

For the experiments using I3D as backbone, we apply the
same training method as for the E55 dataset.

For the experiments that use TBN [6] as backbone, we
first extract features using TBN fine-tuned on the source
dataset following [3]. For each action clip, we extract
features from 25 uniformly sampled frames. We use the
same strategy as TSN [13] to choose 5 frames from 25
frames. For training the model, we apply Adam opti-
mizer [8] with learning rate 1e-4. Specifically, when us-
ing TRN [19] as the temporal aggregation method, we
train the model using SGD optimizer with learning rate
3e-3.

2. Analysis on parameters and computational
complexity

We show the parameter with and without our proposed
CIA model on the I3D backbone in Table 1. The case of
two-stream input (RGB and Flow) is shown. Our proposed
CIA model introduces a very small amount of additional
parameters and computational complexity.

Number of parameters Computational complexity

I3D 25.57 M 53.46 GMac
I3D + Ours 27.64 M 53.51 GMac

Table 1. Model parameter and computational complexity.

3. T-SNE visualization

Figure 1 shows the t-SNE [12] visualization of the fea-
ture spaces produced by TA3N (a) and TA3N + CIA(ours)
(b) on U-H dataset. Our CIA increased accuracy of TA3N
from 89.17 to 91.94, and the domain alignment is more vis-
ible especially in the zoomed in area, showing that our CIA
increases feature transferability.

4. Visualization of consensus map

In addition to Grad-CAM [10] visualizations of SC, we
directly show the spatial consensus map obtained from SC
for more comprehensive understanding on how it works. An
example visualization can be found in Fig. 2.

5. Results on E100 test set

Our method ranks on top of the EPIC-KITCHENS-100
2021 challenge leader-board of unsupervised domain adap-
tation of action recognition. Please refer to our technical
report [17] and challenge results [4] for more details.
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Figure 1. t-SNE plots of feature spaces produced by TA3N (a) and TA3N+CIA (b). Source is shown in blue and target in red. Our method
better aligns source and target domains.

RGB Refined RGB Refined FlowFlow After SC Consensus Map

Figure 2. Grad-CAM [10] visualizations of RGB, refined RGB, Flow, refined Flow and fused modality after SC as well as the consensus
map obtained by SC. The ground-truth action label is open cupboard.

6. More results on different design options of
SC

The SC module aims to spatially re-weight the features
based on the transferability of each location. We first com-
pare with the most widely used fusion methods: spatial max
pooling (Max) and average pooling (Avg) as well as spatial
attention mechanisms for general purpose (Att) and for do-
main adaptation (TADA).

Other than using both modalities to generate the spatial
map, recent researches [2,18] found that the Flow modality
is stronger in encoding motion information and thus used
Flow as the pivot to guide other modalities. We also exper-
iment using a similar setting where we use Flow attention
to guide the RGB attention (Att∗) as an additional compar-
ison baseline. In Table 2, Att∗ is better than Att but worse
than our SC. This is because compared with just using the
Flow modality to lead the RGB modality, our SC can also
use RGB to correct the Flow modality.

We also show the results of our SC with different k value.
By comparing the accuracy of verb, noun and action, we can
conclude the usefulness of multi-scale correlation.

7. More results on UCF-HMDB dataset

We show more results on the UCF-HMDB dataset un-
der the source only setting in Table 3. Better representa-
tion leads to high source only performance, while larger im-
provement by DA shows that our features are more transfer-
able. For example, our CIA result is consistently better than

Module Verb Noun Action

Avg 47.96 29.08 19.19
Max 48.11 29.59 19.48

Att [16] 48.08 29.46 19.39
TADA [15] 47.79 29.69 19.59

Att∗ 48.29 29.56 19.62

SC (k = 1) 48.39 29.70 19.62
SC (k = 2) 48.57 29.72 19.77
SC (k = 3) 48.66 29.79 19.83

Table 2. Performance comparison of our SC module with other
approaches on the E100 validation set.

MMTM [5] under the same setting. To be noted, our CIA
before and after DA enjoys larger gain than MMTM, ours
86.11 to 88.33 (+2.22) vs. MMTM 85.00 to 85.83 (+0.83),
which also validates our claim that CIA leads to better trans-
ferability.
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