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1. Details of Experiments

1.1. Model Details

We use ResNet-18 (with the fully connected layer and

pooling layer removed) as the building block of our net-

works G and F . F additionally includes two up-sampling

and convolution layer that output a feature map F0 ∈
R

h

4
×

w

4
×c, where h and w are the input image’s height and

width respectively. F0 is further feed into a small net-

work with 3 convolutions and 3 de-convolutions to recover a

depth probability volume F1 ∈ R
h

4
×

w

4
×k

′

. F1 is finally de-

coded into a depth map d 1

4

∈ R
h

4
×

w

4 using the soft-argmax

operation as in MVSNet [10]. To supervise the network at

full resolution instead of 1
4 resolution, we further upsample

d 1

4

to the full resolution via nearest interpolation, and add

a predicted residual to it to get final prediction d ∈ Rh×w.

Please refer to our released code for more details.

1.2. Training Details

We use 4 NVIDIA DGX-V100 GPUs with 32GB mem-

ory each to conduct following experiments.

ScanNet. We train for 30 epochs with a batch size 16, and

reduce the learning rate by 10 at epoch 25 and 28. The input

image size is 640× 480. During training, we sample depth

hypothesis uniformly in inverse depth space

di = 1/((1−
i

k
)

1

dmin

+
i

k

1

dmax

), (1)

where k is the number of depth hypothesis. We set k = 32,

dmin = 0.3, and dmax = 10.1.

We trained several baselines on ScanNet dataset. Specif-

ically, we trained MVSNet [10] for 500k iterations. We

trained FastMVSNet [11] for a total 30 epochs, with the last

10 epochs optimizing the GaussNewton layer. We trained

NAS [5] for 20 epochs for initialization, and 10 epoch in-

cluding the normal consistency module. We trained Patch-

matchNet [9] for 30 epochs. We trained DPSNet [3] for

20 epochs. We trained Bts [6] for 20 epochs. The training

for MVSNet/DPSNet costs around 3 days. The training for

NAS costs around 5 days. The training time of FastMVS-

Net/PatchmatchNet costs around 1 day.

SUN3D, RGBD, and Scenes11. We follow similar setup as

the training of ScanNet. During training, we sample depth

hypothesis uniformly in inverse depth space:

di = 1/((1−
i

k
)

1

dmin

+
i

k

1

dmax

), (2)

where dmin = 0.5, dmax = 32.0.

DTU. One modification we made on training DTU dataset is

that we add a confidence prediction. The added confidence

will be used to filter out unconfident predictions during the

final 3D reconstruction. We adopt following loss [4]:

L =
|d̂− dgt|

σ̂
+ log(σ̂), (3)

where σ̂ is the predicted confidence map. We implement

this confidence prediction by adding a separate head in the

final output. Such confidence prediction is trained along

with depth prediction without the need for explicit supervi-

sion. During the test time, we set a threshold τ for σ̂ and

prune all predictions d̂i whose corresponding σ̂i are larger

than τ .

We train for 80 epochs with a batch size 8, and reduce

the learning rate by ten at epoch 40 and 70. The input image

size is 1536 × 1152. The training takes around 5 days. We

follow the practice of the robust training scheme [9] and

use randomly chosen 4 reference images for each source

image during training. We use N = 96 depth hypothesis

uniformly sampled in the inverse depth space (di = 1/((1−
i

k
) 1
dmin

+ i

k

1
dmax

). We use dmin = 425.0, dmax = 935.0.

During testing, we use top 4 reference images(ranked by a

heuristic criterior introduced in [10]), which is the same as

previous approaches [2, 9, 10]. We fuse the depth maps into

final 3D model using the fusion code provided in [9]. The

qualitative results on DTU test set can be found in Figure 5.

1.3. Speed Comparison

We use one V100 GPU to conduct the speed benchmark

for all methods. to We feed each method an input image

of size 640x480. For methods that do not produce full-

resolution depth maps (i.e. MVSNet [10]), we further up-

sampled them to the full resolution using nearest-neighbor
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Method AbsRel ↓ AbsDiff ↓ SqRel ↓ RMSE ↓ RMSELog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
COLMAP 0.384 0.843 1.26 1.480 0.500 0.482 0.663 0.840

DeMoN 0.311 1.330 19.970 2.607 0.247 0.641 0.902 0.967

DeepMVS 0.231 0.663 0.615 1.149 0.302 0.674 0.887 0.941

DPSNet 0.081 0.201 0.097 0.442 0.160 0.885 0.945 0.973

NAS 0.068 0.168 0.056 0.375 0.142 0.905 0.964 0.988

Ours-robust 0.100 0.231 0.057 0.313 0.140 0.895 0.966 0.991

Ours 0.108 0.271 0.130 0.513 0.184 0.860 0.939 0.973

Table 1. Depth evaluation results on the MVS dataset (trained on RGBD, SUN3D, and Scenes11). Please see Sec. 2.2 for discussion.

Method AbsRel ↓ SqRel ↓ log10 ↓ RMSE ↓ RMSELog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
MVSNet 0.154 0.125 0.067 0.478 0.212 0.779 0.927 0.973

NAS 0.134 0.094 0.064 0.434 0.190 0.789 0.932 0.979

Ours 0.113 0.062 0.049 0.332 0.149 0.871 0.968 0.993

Ours-robust 0.115 0.066 0.052 0.354 0.158 0.862 0.960 0.990

Table 2. Depth evaluation results on the SUN3D dataset (trained on ScanNet). Please see Sec. 2.2 for discussion.

interpolation. The FPS numbers are averaged over 500 ran-

dom inputs for each method.

1.4. Pose Corruption

We use the following procedure to generate perturbations

for input poses. Assume the ground truth relative pose is

T = [R | t] between the source image and a certain refer-

ence image. Firstly, we sample N points {pk}
N

k=1 on cor-

responding ground-truth 3D point cloud of the source im-

age. We use N = 10 in our experiments. Then, we project

those N points into reference image using ground truth rel-

ative pose T and camera intrinsics K to get {pk}
N

k=1. We

then perturb {pk}
N

k=1 by adding noise from a uniform dis-

tribution whose maximum value is 10 pixels. We solve

a PnP problem [1] using {pk}
N

k=1 and the perturbed pix-

els {pk}
N

k=1 to get the corrupted T = [R | t]. We accept

the perturbed T if the average pixel offset over the source

image is less than 10 pixels. Otherwise, we set T = T .

We pre-compute all perturbations for all image pairs. Fig-

ure 1 shows the statistics of pose perturbations. Specifically,

we plot the histogram of ∆R = arccos(Tr(RR
−1)−1
2 ), and

∆t =
∥

∥t− t
∥

∥

2
.

Figure 1. Pose corruption statistics. Left: histogram of rotation

perturbation. Right: histogram of translation perturbation.

2. Additional Studies

2.1. Comparison with Videobased Method

We further compare our method with ESTD [7] which

use a memory unit to accumulate information from the past

frames. As shown in Table 3, although ESTD uses memory

units that accumulate information from the past and 2 addi-

tional frames(5 v.s. 3), MVS2D still performs considerably

better in both accuracy and speed.

Method AbsRel δ < 1.25 FPSA FPSB Param(M)

ESTD (CVPR ’21) 0.081 0.931 14.1 - 36.2

ESTD∗ 0.076 0.939 10.1 2.8 36.2

MVS2D (Ours) 0.059 0.963 81.4 42.9 13.0

Table 3. Evaluations on on ScanNet. The top row are numbers

directly obtained from ESTD [8] paper, which use different test-

ing split to ours thus is not directly comparable. ESTD∗ is tested

on the same test split as ours. We report speed at ESTD’s set-

ting (FPSA at input resolution 320x256) and our setting (FPSB at

640x480, same as our main paper Tab. 1). The speed between

ESTD and ESTD∗ is not comparable due to hardware differences.

MVS2D surpasses ESTD both on speed and accuracy.

Metric None Layer1 Layer2* Layer3 Layer4

AbsRel ↓ 0.144 0.061 0.055 0.059 0.817

δ < 1.25 ↑ 0.631 0.874 0.893 0.886 0.814

RMSE ↓ 0.269 0.146 0.134 0.139 0.180

Table 4. Ablation study on which layer to inject multi-view cues.

The results are computed on ScanNet validation set. We can see

inject on the second layer, which is used in our design, leads to the

best results. The results on ScanNet test set are similar.



2.2. Generalization Ability

We did two experiments to evaluate the generalization

ability of all methods to unseen datasets. Following the ex-

perimental setups of DeMoN and NAS, we use the model

trained on SUN3D/RGBD/Scenes11 and test on the MVS

dataset, which is an outdoor dataset and the data distribu-

tions are very different from the training set. The results

can be found in Table 1. Our methods perform better than

COLMAP, DeMoN and DeepMVS, although they still fall

behind NAS under some metrics such as AbsRel. Such a re-

sult is reasonable since our approach is better adapted to the

training distribution, which will lead to performance drop

on heavily out-of-distribution test data.

To further examine each method’s performance on un-

seen datasets whose input data statistics are similar to those

in the training sets, we further test models trained using

ScanNet on SUN3D test sets (see Table 2). The input data

of SUN3D ScanNet are all indoor scenes. We can see that

our methods still perform favorably among other methods.

2.3. Ablation Study on Mask Encoding

To study the benefits of mask encoding, we further ex-

periment with Ours-nomask which removes the mask en-

coding in Eq 5. The results on ScanNet can be found in

Table 5. Remove mask encoding (Ours-nomask) leads to

worse results than Ours. Such behavior is reasonable since

mask encoding provides an easy way for the network to dis-

tinguish the valid and invalid interpolation, thus facilitate

the training.

Method AbsRel ↓ δ < 1.25 ↑ thre@0.2 ↑ thre@0.5 ↑
Ours-nomask 0.0605 0.9635 0.8543 0.9719

Ours 0.0597 0.9640 0.8585 0.9735

Table 5. Ablation study on mask encoding. thre@0.2/thre@0.5

measures the percentage of pixel that has absolute depth error less

than 0.2m/0.5m respectively. Removing mask encoding hurts the

performance, especially for AbsRel

2.4. More Qualitative Results

We show additional visualizations of depth predictions

in Figure 2 & 3. Our method produces higher quality depth

estimations compared to other MVS methods and performs

better than one of the state-of-the-art single-view depth esti-

mation method Bts. Additionally, we show more qualitative

comparisons on 3D reconstruction on ScanNet in Figure 4.

Our method generates comparable or even better visual re-

sults with other methods that require expensive 3D convo-

lutions. We also show the reconstruction result on DTU test

set in Figure 5.
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Bts MVSNet FastMVSNet DPSNet NAS MVS2D (Ours) G.T.

Figure 2. [1/2] Qualitative results on depth prediction. Each row corresponds to one test example. The region without ground truth depth

labels is colored white in the last column. Our prediction outperforms both the single-view depth estimation method and other multi-view

methods.



Bts MVSNet FastMVSNet DPSNet NAS MVS2D (Ours) G.T.

Figure 3. [2/2] Qualitative results on depth prediction. Each row corresponds to one test example. The region without ground truth depth

labels is colored white in the last column. Our prediction outperforms both the single-view depth estimation method and other multi-view

methods.



MVSNet FastMVSNet DPSNet NAS MVS2D (Ours)

Figure 4. Qualitative scene reconstruction results on ScanNet. Our method yields smoother outputs than other baselines. We zoom in parts

of a scene (red box) and show at the corner (blue box) to highlight the differences. Best viewed in PDF.



Figure 5. Qualitative 3D reconstruction results on the DTU test set. We use 4 reference views during the evaluation. The results are

obtained from fusing multi-view depth prediction using the tool provided by PatchMatchNet [9].


	. Details of Experiments
	. Model Details
	. Training Details
	. Speed Comparison
	. Pose Corruption

	. Additional Studies
	. Comparison with Video-based Method
	. Generalization Ability
	. Ablation Study on Mask Encoding
	. More Qualitative Results


