
Non-parametric Depth Distribution Modelling based Depth Inference for

Multi-view Stereo

Supplementary Material

Jiayu Yang1,2, Jose M. Alvarez2, Miaomiao Liu1

1Australian National University, 2NVIDIA

{jiayu.yang, miaomiao.liu}@anu.edu.au, josea@nvidia.com

In this supplementary material, we first introduce the

sparse cost aggregation network in Section 1. In Section 2,

we show additional qualitative results by our method for

different scans on the DTU dataset. In Section 3, we show

additional qualitative results by our method for different

scenes on the Tanks and Temples dataset. In Section 4, we

provide details of the segmentation of {R0, R1, · · · , R4}
based on Laplacian pyramid. In Section 5, we provide com-

parison of runtime and memory with existing methods. In

Section 6, we provide additional ablation studies including

training the model by applying the KL-divergence as loss

function, validation of the top-k hypotheses selection and

applying unsupervised training on the proposed model.

1. Sparse Cost Aggregation Network

In this section, we provide details of the sparse cost ag-

gregation network. As introduced in the main paper, the

sparse cost volume C can not be efficiently aggregated by

regular dense 3D convolutions. We build a sparse cost ag-

gregation network to aggregate cost utilizing the rigid spa-

tial relation stored in pk. Specifically, the basic block of

our network consists of three layers of sparse 3D convo-

lution with factorized kernels on each dimension [29], a

sparse batch normalization layer and a sparse ReLU acti-

vation. The factorized kernels follow the kernel factoriza-

tion in [28] to improve efficiency and reduce memory con-

sumption. Details of the basic block are shown in Tab. 8a.

Using the basic block, we build a sparse 3D U-Net of 4 lev-

els for cost aggregation. The output of the network is nor-

malized by Softmax along the dimension of depth hypoth-

esis to represent probability. Details are in Tab. 8b. The

sparse cost aggregation network is implemented using the

Torchsparse [29] library.

2. More qualitative results on DTU dataset

Fig. 13 shows additional qualitative results on DTU

dataset. Our method based on non-parametric depth dis-

tribution modeling can achieve more accurate depth esti-

mation on small objects (see the first row of Fig. 13) and

boundary regions.

3. More qualitative results on Tanks and Tem-

ples dataset

Fig. 12 shows additional qualitative results on Tanks and

Temples dataset [27]. We compare to the point cloud gen-

erated by the unimodal based method CVP-MVSNet [32].

Our method based on non-parametric depth distribution

modeling can achieve more accurate depth estimation on

small objects and boundary regions.

4. Segmentation using Laplacian pyramid

In this section we provide more details of using Lapla-

cian pyramid for segmenting the ground-truth depth. As-

sume UPq(D) and DOWNq(D) denote upsampling and

downsampling an input depth map D for q times. For ex-

ample, q = 0 defines the operation which directly returns

its input unchanged. We first build a depth map pyramid

{Dq
gt}

Q
q=0 of Q+ 1 levels by repeatedly downsampling the

ground-truth depth map D
0
gt.

D
q
gt = DOWNq(D

0
gt) (10)

We then build the Laplacian pyramid of depth denoted

as {Lap
q
gt}

Q
q=0 by taking the absolute difference between

adjacent levels in {Dq
gt}

Q
q=0, where the lower level depth is

upsampled to match the size of the upper one.

Lap
q
gt = |Dq

gt − UP1(D
q+1

gt )| (11)

Each level of this Laplacian pyramid contains depth

structures present at a particular scale, which we use as a

mask to segment the depth map into different smoothness

regions. Specifically, we generate the mask by finding re-

gions with significant depth residual on certain level. For

each pixel p, its mask Rq
p is computed by a threshold τ .

1



Rq
p =

{

1 if Lap
q
gt,p > τ

0 otherwise
(12)

The τ is set as a very small value. We set τ to be 0.5mm
according to 0.1% of the depth range [425, 935]mm on

DTU dataset. Fig. 11 shows more visualization of the seg-

mentation result.

5. Computational effectiveness

Our model adopts sparse convolution layers from [16]

for sparse cost volume aggregation, which is not fully op-

timized in terms of efficiency. But still our specifically de-

signed sparse cost aggregation network can achieve overall

computational effectiveness similar to existing 3D convolu-

tion based methods and achieved best overall score on DTU

dataset(see Fig. 10). Our method can achieve better perfor-

mance and computational effectiveness along with the im-

provement of sparse convolution in the future.

0 1 2 3 4
Runtime (s)

0.32

0.35

0.38

0.41

Ov
er

al
l s

co
re

 (m
m

)

0 5 10 15
Memory (GB)

0.32

0.35

0.38

0.41

Ov
er

al
l s

co
re

 (m
m

) D2HC-RMVSNet
PatchmatchNet
Vis-MVSNet
EPP-MVSNet
CasMVSNet
UCS-Net
BP-MVSNet
Ours

Figure 10. DTU dataset. Comparison of runtime and memory

consumption.

6. Ablation Study

6.1. Effect of sparse cost aggregation

In Table 5, we evaluate the depth estimation accuracy

on different pixel sets based on the textureness or the depth

gradient. For the former, we set a threshold on the image

variance to 0.0005. The latter, with a threshold of 1mm.

Statistically, there is a boost of about 1.93% in the point

cloud size compared to the method without sparse cost ag-

gregation. This improvement is the result of more 3D points

been preserved by the point cloud fusion process via the ge-

ometric consistency check. More points preserved leads to

improvements in the completeness metric, reflecting that the

distribution of the estimated point cloud better follows the

ground truth.

Method
Texture Depth smoothness

Low High Non-boundary Boundary

Baseline (Uni-modal) 15.801 2.689 5.915 8.359

+ Sparse Cost Agg. 15.352 2.324 5.829 7.961

Table 5. Average depth error (mm) on different regions

6.2. Validation of top­k hypothesis selection

In this section we provide the validation experiments of

the parameter k for top-k hypotheses. To this end, we vali-

date k by selecting top-k hypotheses from the approximated

ground-truth depth distribution P
l
gt,p on each level and re-

port the percentage of pixels on full resolution, the ground

truth depths of which are covered by the selected k hypothe-

ses on all levels. Results are shown in Tab. 6. Our cho-

sen parameters {kl}L−1

l=0
= {4, 8, 16} which correspond to

{M l}Ll=0
= {8, 16, 32, 96} can cover almost all pixels on

the DTU dataset. Increasing k does not provide better cov-

erage. Reducing k will cause 1.4% pixels not covered by

the top-k selected hypothesis.

k Covered pixels

{8, 16, 32} 99.99636%

{4, 8, 16} 99.99622%

{2, 4, 8} 98.52702%

Table 6. DTU dataset. Percentage of pixels, the ground truth

depths of which are covered by top-k selected hypotheses using

different k.

6.3. Using KL divergence as loss

In this section we provide additional results of using

Kullback–Leibler divergence as loss to train our network

on DTU dataset. As mentioned in the main paper, for each

pixel p, we use the depth probability distribution P
l
gt,p ap-

proximated by the high-resolution depth map observations

as ground-truth to supervise the estimated depth distribution

P
l
p. As a measure of the difference between two probabil-

ity distributions, the Kullback–Leibler divergence can also

be used as loss function. Specifically, for each pixel p on

each level l, we use the KL divergence between the esti-

mated depth distribution P
l
p and the approximated ground-

truth depth distribution P
l
gt,p as loss.

Ll
p = KL(Pl

gt,p,P
l
p) (13)

Results are shown in Tab. 7. Comparing with the model

trained by Binary Cross Entropy loss, using KL-divergence

as loss function can achieve slightly better mean accuracy

but slightly worse mean completeness.

Models Acc. Comp. Overall

Ours (BCE) 0.3563 0.2750 0.3156

Ours (KL) 0.3479 0.2930 0.3205

Table 7. DTU dataset. Quantitative results of our model using

different loss functions.

6.4. Unsupervised training

Here we explore unsupervised training for the proposed

network. We follow [31] to use pseudo depth to generate

the depth distributions as supervision. We ran experiments



on the DTU dataset using this setting and achieved accu-

racy 0.385, completeness 0.323 and overall 0.354, which

outperform existing unsupervised MVS methods.

References

[27] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen

Koltun. Tanks and temples: Benchmarking large-scale scene

reconstruction. ACM Transactions on Graphics (ToG), 2017.

1

[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, pages 2818–2826,

2016. 1

[29] Haotian* Tang, Zhijian* Liu, Shengyu Zhao, Yujun Lin, Ji

Lin, Hanrui Wang, and Song Han. Searching efficient 3d ar-

chitectures with sparse point-voxel convolution. In ECCV,

2020. 1

[30] Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo

Speciale, and Marc Pollefeys. Patchmatchnet: Learned multi-

view patchmatch stereo, 2021. 5

[31] Jiayu Yang, Jose Alvarez, and Miaomiao Liu. Self-

supervised learning of depth inference for multi-view stereo.

In CVPR, 2021. 2

[32] Jiayu Yang, Wei Mao, Jose M Alvarez, and Miaomiao Liu.

Cost volume pyramid based depth inference for multi-view

stereo. In CVPR, 2020. 1, 4



R4R3R2R1R0

Ref. Image Ref. Depth Segmentation

R4R3R2R1R0

R4R3R2R1R0

Ref. Image Ref. Depth Segmentation

R4R3R2R1R0

Figure 11. More visualization of depth map segmentation. We segment ground-truth depth map into five regions corresponding to different

depth smoothness and evaluate depth estimation accuracy on each region. The R0 region contains pixels with most abrupt depth change,

such as object boundaries or small objects.

Ours Ours OursCVP-MVSNet CVP-MVSNet

Figure 12. Tanks and Temples dataset. More qualitative results on small objects and boundaries. Comparing with the unimodal based

method CVP-MVSNet [32], our method based on non-parametric depth distribution modeling can achieve more accurate depth estimation

on small objects and boundary regions.



Ref. Image Ground-truth Unimodal baseline PatchmatchNet [30] Ours

Figure 13. DTU dataset. More qualitative results on small objects and depth boundaries. Every upper row shows the ground-truth and

estimated depth maps and under row shows the estimation error comparing with ground-truth depth map. Areas with no ground-truth are

marked blue. Our method based on non-parametric depth distribution modeling is more accurate on small objects (row 1,3,4) and boundary

regions (row 2,5).



Input Input Size Layer Output Output Size

(a) Sparse 3D Basic Block: ConvBnRelu3DSparseFactorize

input K × CH sparse conv3d, kernel size=1x1x3, stride=1 - K × CH
- K × CH sparse conv3d, kernel size=1x3x1, stride=1 - K × CH
- K × CH sparse conv3d, kernel size=3x1x1, stride=1 - K × CH
- K × CH sparse BatchNorm - K × CH
- K × CH sparse ReLU output K × CH

(b) Sparse Cost Aggregation Network

Cl K × CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K × CH
- K × CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K × CH
- K × CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 c0 K × CH

c0 K × CH sparse conv3d, kernel size=2x2x2, stride=2 - K/4× 2CH
- K/4× 2CH sparse BatchNorm - K/4× 2CH
- K/4× 2CH sparse ReLU - K/4× 2CH
- K/4× 2CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K/4× 2CH
- K/4× 2CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 c1 K/4× 2CH

c1 K/4× 2CH sparse conv3d, kernel size=2x2x2, stride=2 - K/16× 4CH
- K/16× 4CH sparse BatchNorm - K/16× 4CH
- K/16× 4CH sparse ReLU - K/16× 4CH
- K/16× 4CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K/16× 4CH
- K/16× 4CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 c2 K/16× 4CH

c2 K/16× 4CH sparse conv3d, kernel size=2x2x2, stride=2 - K/64× 8CH
- K/64× 8CH sparse BatchNorm - K/64× 8CH
- K/64× 8CH sparse ReLU - K/64× 8CH
- K/64× 8CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K/64× 8CH
- K/64× 8CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 c3 K/64× 8CH

c3 K/64× 8CH sparse conv3d, kernel size=2x2x2, stride=2, transposed=True - K/16× 4CH
- K/16× 4CH sparse BatchNorm - K/16× 4CH
- K/16× 4CH sparse ReLU - K/16× 4CH
- K/16× 4CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K/16× 4CH
- K/16× 4CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 c3up K/16× 4CH

c2 + c3up K/16× 4CH sparse conv3d, kernel size=2x2x2, stride=2, transposed=True - K/4× 2CH
- K/4× 2CH sparse BatchNorm - K/4× 2CH
- K/4× 2CH sparse ReLU - K/4× 2CH
- K/4× 2CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K/4× 2CH
- K/4× 2CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 c2up K/4× 2CH

c1 + c2up K/4× 2CH sparse conv3d, kernel size=2x2x2, stride=2, transposed=True - K × CH
- K × CH sparse BatchNorm - K × CH
- K × CH sparse ReLU - K × CH
- K × CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K × CH
- K × CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 c1up K × CH

c0 + c1up K × CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K × CH
- K × CH ConvBnRelu3DSparseFactorize, kernel size=3, stride=1 - K × CH
- K × CH sparse conv3d, kernel size=1x1x3, stride=1 - K × CH
- K × CH sparse conv3d, kernel size=1x3x1, stride=1 - K × CH
- K × CH sparse conv3d, kernel size=3x1x1, stride=1 - K × CH
- K × CH sparse conv3d, kernel size=1x1x1, stride=1 - K × 1
- K × 1 Softmax P

l K × 1

Table 8. Details of the sparse cost aggregation network. Layers with unnamed input or output are sequential layers, where the input or

output are directly connected to previous or following layer.


	. Sparse Cost Aggregation Network
	. More qualitative results on DTU dataset
	. More qualitative results on Tanks and Temples dataset
	. Segmentation using Laplacian pyramid
	. Computational effectiveness
	. Ablation Study
	. Effect of sparse cost aggregation
	. Validation of top-k hypothesis selection
	. Using KL divergence as loss
	. Unsupervised training


