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A. Oak Base Details

In this section, we provide the details of the Object
Affordance Knowledge base (Oak base), covering the lists
of total 32 categories and 30 attribute phrases in Tab. 1.

B. Data Annotation Details

This section is a supplementary of the Sec. 3.2.3: Hand
Pose and Geometry. Given the manually labeled 2D hand
keypoints, we aim to solve the pose θ ∈ R16×3, shape β ∈
R10 parameters and the wrist’s position P h,0 ∈ R3 of a 3D
hand. These parameters will drive a 3D hand model by a
differentiable MANO layer: M(·) [4]:

Vh,Ph = M(θ,β) + Ph,0 (1)

where Ph ∈ R21×3 is the hand joints’ 3D position, and
Vh ∈ R778×3 is the hand mesh vertices’ 3D position. The
objective cost function for solving θ, β and P h,0 consists
of 5 terms.

Reprojection Error. First, we want the 2D projections of
the 3D hand joints Ph to match its 2D keypoints annotation

maniptool knife, screwdriver, hammer, wrench,
toothbrush, pen, frying pan, drill, pin-
cer, scissors, stapler, mug, teapot, cup,
can, box, bowl, wineglass, cylinder bot-
tle, trigger sprayer, lotion bottle

functool eyeglasses, headphones, binoculars,
game controller, lightbulb, camera,
flashlight, mouse, phone, apple, banana,
donut

Attribute
phrases

contain sth, cover sth, pump out sth, cut
sth, stab sth, flow in/out sth, tighten sth,
loosen sth, clamp sth, brush sth, trig-
ger sth, observe sth, point to sth, shear
sth, attach to sth, connect sth, knock
sth, spray sth, no function; hold by
sth, screwed by sth, unscrewed by sth,
pressed by sth, handled by sth, plug by
sth, unplug by sth, squeeze by sth, pour
out by sth

Table 1. The categories and attribute phrases in our Oak base

p̂. Let the subscript j and v be the joint’s ID and view’s ID,
we have the reprojection cost:

Erepj =
1∑
wj,v

4∑
v=1

21∑
j=1

wj,v

∥∥∥KvTvP h,j − p̂j,v

∥∥∥2
2

(2)

The gradients from Erepj will back propagate to P h and
then update the θ, β and P h,0.

Geometry Consistency. Second, we want the 3D geom-
etry model of hand and object to be consistent with their
real-world observation: no interpenetration would occur.
Hence, we introduce the second cost function: interpene-
tration loss. We acquire the object’s sign distance field: O
from its scanned model, transform the O’s pose from Mo-
Cap system to the camera system, and calculate the sign
distance value of a 3D hand vertex Vh,i to O. The interpen-
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etration cost penalizes those hand vertices inside the object
surface (with negative sign distance values).

Eintp =
∑
Vh,i

−min
(

SDFO(Vh,i), 0
)
, (3)

The gradients from Eintp will back propagate to each Vh,i

and then update the θ, β and P h,0.

Silhouette Constraint. Third, we want the contour projec-
tion of hand and object models to match the visual cues.
Hence, we introduce a binary silhouette cost. We first ac-
quire the hand and object’s binary mask (Bh and Bo) from
the recorded images. This process is automatic. We filter
out the background pixels through green-screen and depth
image matting. The remaining foreground pixels are the
union of Bh and Bo. Then, we render the 3D hand and
object mesh on an image as silhouette and penalize the per-
pixel misalignment between the rendered silhouette and the
binary mask.

Esh =
∑

all pix.

f(Vo ∪ Vh)︸ ︷︷ ︸
detached

∩ BCE
{
f(Vo∪Vh), (Bh∪Bo)

}
(4)

In this equation, the f(·) is a differentiable rendering func-
tion [1]; the (Vo ∪ Vh) is the composited mesh model of
hand Vh and object Vo; the f(Vo ∪Vh) is the rendered sil-
houette image of hand and object model; the (Bh ∪ Bo) is
the union of hand and object binary mask; and the BCE{, }
is the binary cross entropy loss function; The gradients from
Esh will back propagate to Vh and then update the θ, β and
P h,0.

Anatomical Constraint. Forth, we want the MANO hand
pose to satisfy the anatomical constraints of human hand.
Hence, we borrow the axial adaptations from Yang et al. [7]
and constrain the rotation axes and angles.

Eanat =
∑
j∈all

(
aj ·nt

j+max
(
(ϕj−

π

2
), 0

))
+

∑
j /∈MCP

aj ·ns
j ,

(5)
where the aj and ϕj denote the axial and angular compo-
nents of the j-th joint’s rotation, the nt

j and ns
j are the pre-

defined twist and splay direction, and“MCP” indicates the
five Metacarpal joints. The gradients from Eanat will back
propagate to each joint’s axis-angle and then update the θ.

Temporal Smoothing. The above cost functions can only
improve the per-frame precision of 3D hand annotations.
However, frame-by-frame smoothness is also critical to im-
proving our annotation quality. Hence, We want the solved
3D hand poses to be continuous in the time domain. We
adopt a low-pass filter (e.g. Kalman Filters) to post-process
the poses θ and wrist positions P h,0 across the entire image
sequence.

C. More Dataset Analysis

Hand Pose Distribution. We project the interacting hand
poses into an embedded space yield from t-SNE [6]. The
poses that transferred from the same OakInk-Core pose are
painted in the same color. From the box in Fig. 1, we can see
that the similar interacting hand poses with different objects
are mapped to adjacent in the embedded 2D space. From the
circles in Fig. 1, we can conclude that the different grasping
types are away from each other.

Figure 1. t-SNE embedding of hand poses. We randomly select 20
colors to visualize the clustered poses.

Contact Distribution. We provide the contact heatmaps
on example objects that reveal the frequencies of contact
among all interactions. Fig. 2 shows such heatmaps on six
Oak base categories. We see that the “hot” area (red) that
denotes the high frequency of contact is consistent with the
object affordance we described.

Figure 2. Heatmaps of contact frequency on object surface.

D. Implementation: IntGen and HoverGen

The architecture of IntGen (Fig. 4) and HoverGen
(Fig. 5) model are modified from the original GrabNet [5]
(Fig. 3) design.

BPS
�����

�����

Figure 3. GrabNet [5]: the original design.

In the IntGen task, we select three intents: use, hold
and hand-out, map the intents’ word string to a real-valued
word vector, and train the networks with the intent vector
as the additional input. During training, poses within dif-
ferent intents will be mapped to different areas in the latent

2



pose space: Z ∈ R16. The training loss functions in Int-
Gen are identical to those in GrabNet, including standard
conditional VAE losses (KL divergence and weight regu-
larization), mesh reconstruction losses (hand vertices and
mesh edge loss), and physical quality losses (penetration
and contact loss). We train the IntGen on category-level
data in OakInk-Shape, including the mug, camera, trigger
sprayer and lotion bottle. The training process lasts 1,000
epochs, with the mini batch size 32 and initial learning rate
of 1 × 10−3. The learning rate decays by a factor of 0.5 at
every 200 epochs.

BPS
�����

�����

[Intent]�����

Figure 4. IntGen: the intent-based grasp generation network de-
sign.

As shown in Fig. 5, in the HoverGen task, we provide
the root rotation: θ⋆

0 and root position: P ⋆
h,0 of the giver’s

hand as the additional inputs for CoarseNet, and the Cham-
fer distance: Dhh ∈ R778 from the original giver’s hand
to the predicted receiver’s hand as an additional input for
RefineNet. As a results, the HoverGen models learns a
receiving hand’s embedding space, Z , conditioned on the
object shape and the giver’s hand root pose. At inference
time, given an unseen object shape and the giver’s hand root
pose: (θ⋆

0 ,P
⋆
h,0), we sample a vector from Z and decode

a receiver hand pose to complete a human-to-human han-
dover. The training loss in HoverGen model includes all the
losses in IntGen model, plus an L1 loss on the Chamfer dis-
tance Dhh w.r.t. the ground-truth D̂hh, a Chamfer distance
from the original giver’s hand to the ground-truth receiver’s
hand. We train the HoverGen model 1,000 epochs with a
mini-batch size 256 and initial learning rate of 1 × 10−3,
decaying a half at every 200 epochs.

BPS
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Figure 5. HoverGen: the handover generation network design.
The giver’s hand is paint in gray and the receiver’s hand in blue.

E. Perceptual Survey for Generation Tasks
To investigate the general audience’s opinion about the

predicted pose of the generation tasks: GrabNet, IntGen,
and HoverGen, we conducted three perceptual surveys on
the Amazon Mechanical Turk (AMT). In each survey, we

show four views of each predicted hand-object interaction
and ask the audiences to give their opinion about a statement
(e.g. “the hand is interacting naturally with the object”).
The audiences are asked to rate the statement with a 5-level
Likert scale (“strongly agree” corresponds to grade 5 and
“strongly disagree” corresponds to grade 1). The layout of
the perceptual surveys on GrabNet, IntGen, and HoverGen
are shown in Fig. 6.

F. Additional Benchmark Results

F.1. Hand Mesh Recovery: Other Splits

Apart from the default split SP0 (split by views) in the
main text, we also provide another two data splits and the
HMR benchmark results for OakInk-Image.

• SP1 (subjects split). (train/val/test: 6/1/5). We split the
OakInk-Img by subjects. The subjects recorded in the test
split will not appear in the train split.

• SP2 (objects split). (train/test: 70%/5%/25%). We split
the OakInk-Img by objects. The objects that have been
grasped in the test split will not appear in the train split.

Splits Methods MPJPE↓ (AUC↑) MPVPE↓

SP1
I2L-MeshNet [3] 18.04 (0.641) 18.08
HandTailor [2] 15.72 (0.792) 16.31

SP2
I2L-MeshNet [3] 15.79 (0.733) 15.87
HandTailor [2] 14.14 (0.846) 14.81

Table 2. HMR results in mm. AUC are shown in parentheses.

F.2. Unseen Out-of-domain Object

We refer the objects in OakInk-Shape test set as unseen
in-domain objects, indicating that it may have similar coun-
terparts included in the training set. In this part, we are
also interested in the performance of our generation tasks on
the unseen out-of-domain objects. We choose the Stanford
bunny, a general 3D test model, as an illustrative prototype
of out-of-domain object. We test the GrabNet and Hover-
Gen model on the Stanford bunny and provide the generated
grasps and receiving poses in Fig. 7. Both the GrabNet and
HoverGen model are trained on our OakInk-Shape training
set. The results show that through training on the OakInk-
Shape, GrabNet and HoverGen can synthesize realistic and
prehensile interactions for general objects.

F.3. More Visualization

We provide more qualitative results of the benchmark re-
sults of HMR task in Fig. 8, HOPE task in Fig. 9, GraspGen
(GrabNet) in Fig. 10: top, IntGen in Fig. 10: middle, and
HoverGen in Fig. 10: bottom.
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Figure 6. The layout of three perceptual surveys on AMT.
Left: GrabNet (statement: the hand is interacting naturally with the object);
Middle: IntGen (statement: the blue hand is using the object naturally);
Right: HoverGen (statement: the blue hand is performing a natural receiving action from the gray hand)

������������������������� ���������������

Figure 7. Generation results on unseen out-of-domain objects.

G. Discussion on Personally Identifiable Data
We collect hand-object interaction data on 12 human

subjects recruited through a third-party crowd-sourcing
company. In the collection process, their actions will be
recorded in video sequences by the MulCam system. We
ensure that the data collecting process meets the ethics re-
quirements through the following announcements:

• The third-party crowd-sourcing company warrants appro-
priate IRB approval (or equivalent, based on local govern-
ment requirement) are obtained. The company name and
warranties are withheld based on the anonymous submis-
sion guidelines.

• All the subjects involved in data collection are required to
sign a contract with the third-party crowd-sourcing com-
pany, involving permission on the portrait usage, the ac-
knowledgment of data usage, and payment policy. Dur-
ing the data collecting process, all subjects are paid by the
hour.

• All the subjects involved in the data collecting process
acknowledge that the collected data will only be intended
for academic and permitted commercial usages.

• We ensure all the subjects involved in the data collecting
process are willing to share the personal-related data, in-
cluding actions, skin tones, body/hand shapes, etc.

• We require all the subjects not to dress in revealing or
offensive clothes during the data collection process.

• Upon the release of the dataset, we will desensitize all
samples in the dataset by blurring the subjects’ faces (if
any), tattoos, rings, or any other accessories that may re-
veal the subjects’ identity.

References
[1] Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. Neu-

ral 3d mesh renderer. In CVPR, 2018. 2
[2] Jun Lv, Wenqiang Xu, Lixin Yang, Sucheng Qian, Chongzhao

Mao, and Cewu Lu. HandTailor: Towards high-precision
monocular 3d hand recovery. In BMVC, 2021. 3

[3] Gyeongsik Moon and Kyoung Mu Lee. I2l-meshnet: Image-
to-lixel prediction network for accurate 3d human pose and
mesh estimation from a single rgb image. In ECCV, 2020. 3

[4] Javier Romero, Dimitrios Tzionas, and Michael J Black. Em-
bodied hands: Modeling and capturing hands and bodies to-
gether. ACM Transactions on Graphics, 2017. 1

[5] Omid Taheri, Nima Ghorbani, Michael J Black, and Dimitrios
Tzionas. GRAB: A dataset of whole-body human grasping of
objects. In ECCV, 2020. 2

[6] Laurens van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. Journal of Machine Learning Research,
2008. 2

[7] Lixin Yang, Xinyu Zhan, Kailin Li, Wenqiang Xu, Jiefeng Li,
and Cewu Lu. CPF: Learning a contact potential field to model
the hand-object interaction. In ICCV, 2021. 2

4



Figure 8. More qualitative results on HMR task.

Figure 9. More qualitative results on HOPE task.
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Figure 10. More qualitative results on GrabNet, IntGen and HoverGen predictions.
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