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A. Implementation

A.1. Architecture

Encoders EO, ER and Classifiers CO, CR for SGE. Both
the object embedding encoder EO and the relationship em-
bedding encoder ER are word embedding codebooks. The
object classifier CO has its weight shared with EO. That is,
when classifying an output feature fO

i , the classifier will
compare it to each object codevector in the codebook. The
object class with the highest cosine similarity between the
codevector and the feature is then returned as predicted
label. The classifier CR has its weight shared with ER for
the same reason.

Encoders EB , ED and Regressors RB , RD for G2L.
Both the bounding box encoder EB and the disparity
encoder ED are two-layer MLPs. The disparity regressor
RD is a two-layer MLP while the bounding box regressor
RB contains two distinct two-layer MLPs, R1

B and R2
B

respectively. As mentioned in Sect. 3.3.2, one of the
MLP R1

B is trained for predicting the bounding boxes for
novel/masked objects and the another one R2

B is trained for
predicting the boundary offset for existing objects.

Encoder EI for G2L & L2I. The architecture of the
image encoder EI we deployed is detailed in Table A.
The EI consists of five 2d convolution layers with batch
normalization and leaky relu activation in each layer.

Scene Graph Transformers for SGE & G2L. The archi-
tecture overview of the SGT layer is shown in Figure A.
Noted that the details of our node-level and edge-level
attention are depicted in Sect. 3.2.1 and Sect. 3.3.2. All
the SGT layer in TSGE and TG2L consists of attention
hidden size datten = 512, feed forward size dff = 2048,
multi-head number nhead = 4, and dropout = 0.1. Both
TSGE and TG2L have 4 SGT layers.

Table A. Architecture design of image encoder EI for the stages
of G2L and L2I.

Type Argument

Conv2d c=64, k=5, pad=2
BatchNorm2d c=64
LeackReLU slope=0.2
Conv2d c=128, k=3, stride=2, pad=1
BatchNorm2d c=128
LeackReLU slope=0.2
Conv2d c=128, k=3, stride=2, pad=1
BatchNorm2d c=128
LeackReLU slope=0.2
Conv2d c=256, k=3, stride=2, pad=1
BatchNorm2d c=256
LeackReLU slope=0.2
Conv2d c=256, k=3, pad=1
BatchNorm2d c=256
LeackReLU slope=0.2

Generator GSPADE for L2I. Our GSPADE is modified
from AttSpade [2], with the ability to take input image
as guidance for image outpainting work. The generator
is comprised of seven SPADE Resnet blocks. Apart from
the size of input channels, which is required to be adjusted
due to the input image feature, the architectures and the pa-
rameters mostly follow their original setting with the same
Pix2Pix models as image and object discriminators. Please
refer to the official repository https://github.com/
roeiherz/CanonicalSg2Im for more details of the
implementation of AttSpade.
Baselines. For the experiments in Table 1 and Table 2, the
Transformer, LTNet and GTwE are all set to have the same
aforementioned hyper-parameters, which are the attention
hidden size datten = 512, feed forward size dff = 2048,
multi-head number nhead = 4, and dropout = 0.1. For the
experiments in Table 2, the hidden size of GCN is also set
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Figure A. The block diagram for our proposed SGT layer. The
blue arrows indicate the flow of the node inputs hn, while the red
ones denote the flow of the edge inputs he. In order to exploit
the observed graph structure, the node-level attention of hn in our
SGT is guided by the edge inputs he, while the edge-level atten-
tion of he is guided by the node inputs hn. The symbol s indicates
the summation operation.

to 512.

A.2. Datasets

COCO-stuff. The COCO dataset [6] provides images of 80
object categories with bounding box information. COCO-
stuff [1] adds 91 more stuff categories (e.g., sky, snow, etc.),
with 118K/50K images for training and validation.
VG-MSDN. The original Visual Genome dataset [4] con-
tains more than 100K images with noisy labels, and thus
we consider its subset of VG-MSDN [5], containing 150
object categories and 50 relationship categories with about
45K/10K for training/validation.
Cityscapes. The Cityscapes dataset [3] contains 2,975/500
images for training and validation. It provides about 40 ob-
ject categories with bounding box information for each im-
age.

A.3. Scene Graph Generation

For datasets with scene graph annotation, such as VG-
MSDN, the labeled scene graphs are used as ground truth
without any pruning. For datasets without scene graph an-
notation, such as COCO and CityScapes, we follow the pro-
cessing technique of [2, 8] to generate ground truth scene
graphs. That is, we utilize the ground truth objects &
bounding boxes to construct rule-based scene graphs. This
processing stage does not require extra data/label supervi-
sion.

A.4. Training and Inference

All our models are trained with Adam optimizer and the
base learning rate γ is set to 4e-4. We train the three models
(TSGE , TG2L, and GL2I ) individually rather than end-to-
end, since the errors of upper-stream models can greatly de-
teriorate the result of down-stream ones during training, i.e.
incorrect generated novel object in SGE leads to impossible
image reconstruction in L2I.

A.4.1 Scene Graph Expansion

We train our SGE model for a total of 10 epochs. We de-
ploy the learning rate schedule as the following. The ini-
tial learning rate γ0 is set to a tenth of γ. In the warmup
stage, the learning rate grows linearly up to the maximum
learning rate γ. Then the learning rate will hold for a short
period of steps. Finally, the learning rate decay exponen-
tially until the minimum learning rate 2.5 × 10−5γ is hit
at the same time as the end of training. The warmup stage
spans a tenth of our total training steps while the hold stage
spans a thousandth. It takes 4-12 hours to train on a single
NVIDIA-GTX 1080 depending on the datasets and differ-
ent hyper-parameters.

For data processing on scene graphs, we also introduced
a few dummy tokens besides [MASK] (the token for masked
objects and relationships). A dummy object [IMAGE] is
added to prevent null input. Each object will have an re-
lationship [IN IMAGE] between it and the dummy object
[IMAGE]. Each object will have an relationship [SELF] be-
tween it and itself, i.e. ∀i ∈ 1 : N, rgtii = SELF. Noted that
when considering the objective function for training, such
target labels are not excluded from computation.

We follow the setting in [8] where images with less than
3 objects are excluded while images with more than 8 ob-
jects will have the exceeding objects ignored. That is, if
there are 10 objects in the given scene graph, we will ran-
domly keep 8 of all. This rule is also applied to the training
and inference on G2L, while on L2I the maximum number
of objects is set to 30.

The objective function LSGE has to be further adjusted
since the distribution of the relationship labels is highly
uneven, which can have a negative impact on training.
That is, when computing the objective function Lr

SGE =
LCE(r

op
ij , r

gt
ij ), most of the target rgtij is no-relation due to

the sparsity of the annotation in the datasets. To prevent
biased training, weighted cross-entropy loss is deployed in-
stead, and the weight of label no-relation is set to 0.05 while
the weights of other labels are still set to 1.0.

A.4.2 Scene Graph to Layout

Each ground truth image Igt is first resized to 256 × 256
pixels and a sub-image of size 128 × 128 pixels is cropped



Table B. Ablation studies of our SGT for scene graph expansion
on VG-MSDN. Note that Lsym exploits the converse relationship
from the input node pair as described in Sect. 3.3.1.

Obj Rel

rAVG Hit@1 / 5 rAVG Hit@1 / 5

node-level 9.32 35.7 / 64.8 3.69 46.1 / 81.6

+ edge-level 8.68 38.7 / 68.6 3.80 48.6 / 80.7
+ Lsym 8.96 38.2 / 67.8 3.65 52.0 / 82.4

Ours 8.38 39.7 / 68.9 3.43 55.3 / 84.3

out as the input image Iin. The images then are normalized
to the range [−1, 1]. The associated mask M in indicating
which part of the Iin is input guidance and which part is
missing region will also be concatenated onto Iin as the
input to EI . Objects that have their bounding boxes com-
pletely out of the cropped region will be considered masked
and so are the associated relationships.

As for the input bounding boxes bin, those of the masked
objects will be set to (bx, by, bw, bh) = (0.5, 0.5, 0.0, 0.0).
The bounding box of the dummy object [IMAGE] is set to
(0.5, 0.5, 1.0, 1.0). The rest of the objects will have their
bounding boxes reduced to be in the area of the cropped
region. All the input disparities din will be calculated after
the processing on bin.

We train our G2L model for a total of 50 epochs. The
learning rate schedule is the same as the one used for SGE.
It takes about 2 days to train on a single NVIDIA-GTX 1080
depending on the datasets and different hyper-parameters.

A.4.3 Layout to Image

The image pre-processing is the same as G2L. We train
our L2I model for a total of 30 epochs. No learning rate
schedule is used. It takes about 7 days to train on a single
NVIDIA-V100.

B. Ablation Studies
Due to the limitation of spaces, we report only a part of

the scores for ablation studies in Sect. 4.2. Here we report
the complete table with both rAVG and Hit@1/3 as metrics
for ablation studies on SGE in Table. B. It is worth not-
ing that, since scene graphs are often sparse, adding only
edge-level attention w/o exploiting converse relationships,
i.e. Lsym, tends to overfit the observed relationships thus
with degraded results.

Additionally, we also conduct ablation studies for G2L
to evaluate the effectiveness of our design. As shown in Ta-
ble C, the introduction of edge-level attention is also bene-
ficial to the layout prediction. Adding in visual features f I

from EI greatly enhances the performance on layout ex-

Table C. Ablation studies of our SGT for scene graph to lay-
out on VG-MSDN in terms of mIoU. The three mIoU scores in
each row are calculated for novel objects, existing objects, and all
objects, respectively.

mIoU

node-level 11.5 / 79.2 / 61.1

+ edge-level 12.0 / 80.0 / 62.1
+ EI 13.2 / 80.3 / 60.8

Ours 14.5 / 81.1 / 62.4

Table D. Quantative result of image outpainting on VG-MSDN
in terms of FID.

VG-MSDN
FID

Boundless [7] 36.07
AttSpade [2] 23.61

Ours 23.42

pansion with existing objects. Overall, with full objective
implemented, our model achieve the best performance.

C. Quantitative Result
For image outpainting on VG-MSDN and COCO-stuff,

we report the FID scores (the lower the better) for evaluation
of the quality of outpainted images. As shown in Table D,
our model surpass Boundless [7] by a great margin on VG-
MSDN. It is also expected that our model is only slightly
better than AttSpade due to the similarity between our L2I
architecture and theirs. The main difference lies on the fact
that our model is able to generate novel objects which it-
self does not directly enhance image quality but resulting
in richer and more meaningful images. Our advantage is
reflected better in Sect. D.4

D. Visualization
D.1. t-SNE on relationship features

To examine the effect of our proposed feature converter
EC for exploiting converse relationships on VG-MSDN, we
project all the relationship features ER(y

R
i ) and converse

relationship features ER(ỹ
R
i ) for all i = 1 : M onto a

2D plane with t-SNE, where each yRi is a relationship label
while ỹRi is its pseudo converse label, and M is the number
of relationship labels.

As shown in Figure B(a), the feature of next to and
converse-next to are close to each other since the converse
relationship of next to is itself. In Figure B(b), the fea-
tures of below and under and the derived converse rela-
tionship features of their antonyms such as converse-on and



Figure B. t-SNE visualization of relationship features fR.
(a) With the relationship feature of next to highlighted in dark
red triangle, its converse version (i.e., converse-next to) is its
synonym (shown in dark green square). Thus, their fR are
close to each other. (b) With below and under as synonyms
(i.e., the two dark red triangles), the derived converse relation-
ship features of their antonyms such as converse-on, converse-
above, converse-be on, converse-stand on, converse-on top of
and converse-lay on would be nearby as expected.

converse-above are clustered as expected. Specifically, w/o
exploiting the EC , the cosine similarity scores between “un-
der” and its (1) synonym “below” and (2) antonym “above”
are (1) 0.36 and (2) 0.15 respectively. By enforcing the
converse property into our SG transformer, the associated
scores (1) increase to 0.62 and (2) decrease to -0.93, which
is consistent with the improved results reported in ablation
studies of Table D. These experiments show that our design
does exploit the information carried on converse relation-
ship pairs.

D.2. Three-level image outpainting

In Figure C, we give more examples on how our three-
stage semantic image outpainting is achieved, i.e. from the
extrapolation on scene graphs, to the extrapolation on lay-
outs, then to the generation of outpainted images.

D.3. Failure cases

We provide a few failure cases in Figure D, which are
due to over-annotated data and thus prevent the learning of
proper scene graphs.

D.4. Additional Visualization

Additional image outpainting results on VG-MSDN are
shown in Figure E, F and G. For example, one can see
the first and fourth rows of Fig. F, in which instances of
novel/additional animal categories are introduced. In the
fifth row of Fig. G, our model is able to synthesize the entire
road region with traffic lines which are not presented in the
input.
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Figure C. Visualization of our semantics-guided image outpainting on VG-MSDN. From left to right: input image with layout
(Iin,Lin), input scene graph Sin, output scene graph Sop, output layout Lop and output image Iop. Note that only selected nodes
from the input scene graphs are depicted for visualization purposes. Additionally, we note that when the SGE model is used for image
outpainting, unlike the experiments in Figure 5(a) where only one novel object is generated, we do not enforce such constraint. That is, our
SGE model is capable of generating multiple objects, e.g. the first example.

Figure D. Two example failure cases. From left to right: input image Iin, our output image Iop and ground truth image Igt. Our model
tends to generate images with noisy or repeating content (e.g. repeating “legs” or “windows” which are highlighted as blue bounding
boxes) if the training images with similar visual concepts are over annotated. For example, training images of “zibra” are often annotated
with multiple (more than 4) “legs”, or those of “building” are typically with a large number of “windows” annotated.



Figure E. Example outpainting results on VG-MSDN. From left to right: input image, output images produced by Boundless [7],
AttSpade [2] & ours, and the ground truth image.



Figure F. Example outpainting results on VG-MSDN. From left to right: input image, output images produced by Boundless [7],
AttSpade [2] & ours, and the ground truth image.



Figure G. Example outpainting results on VG-MSDN. From left to right: input image, output images produced by Boundless [7],
AttSpade [2] & ours, and the ground truth image.
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