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A. Validation dataset details

In addition to the training datasets listed in our main sub-
mission, we list in Table 2 the statistics for all the validation
datasets used in our experiments. Similar to the Table 1 in
our main submission, we calculate the vocabulary size for
each dataset, which is typically more than the number of
concepts (classes).

B. Experiment details

B.1. Training on image classification data

This part mainly explains the detailed experiment setups
for Sec. 4.1 in our main submission.
Model architecture. We employ two representative archi-
tectures, ResNet [1] and Swin Transformer [4] to build the
visual encoder. The globally pooled feature from last visual
encoder layer is used as the visual feature. For language
encoder, we use a 12-layer Transformer [7] with hidden
dimension of 512 following [5]. Features from visual and
textual encoder are projected to the same dimension of 512,
using two linear projection layers.
Training protocol. For optimization, we use SGD [6] for all
CNN models, while AdamW [3] for all models with Trans-
formers on either vision or language side. We set the learning
rate to 0.4 and 0.002, weight decay to 1e-4 and 0.05 for SGD
and AdamW optimizer, respectively. All models are trained
for 500 epochs with a batch size of 4096. We use same set
of data augmentation and regularization as in [4], but do not
use MixUp [10] and CutMix [9] except for the last column
in Table 2 of our main submission. For all training, we used
a cosine learning rate schedule, with 5 epochs and 20 epochs
warmup for ResNet and Swin Transformer, respectively.

B.2. Training on image-text-label space

Training protocol for Sec. 4.2.1. We use Swin-Tiny as the
visual encoder and follow the training settings in Section 4.1

*equal contribution

mostly to train the models on the joint of image-label and
image-text pairs. However, we notice there is a severe im-
balance between image-label and image-text data as shown
in Table 1 in our main submission (e.g., there are around
1.3M images in ImageNet-1K while above 12M images in
GCC-12M dataset). To ensure that the model training is
not biased to the dominant image-text pairs, we develop a
balanced data sampler for two data types. More specifically,
at each epoch, we randomly sample a subset of image-text
pairs that has the equal or similar size to that of image-label
data. In this case, the model sees half image-label data and
half image-text data at each iteration for a balanced learning.
We keep the number of training epochs the same as 500, so
the effective number of training epochs on the image-text
dataset is roughly 500×(size of image-label dataset)/(size
of image-text pair dataset). For example, the model learns
from GCC-12M for around 40 epochs. We find this balanced
sampling strategy is very important to achieve the reported
performance in our main submission.

Training protocol for Sec. 4.2.2. We followed the training
protocol in CLIP [5] for fair comparison. Specifically, we
merely used random crop for dataset augmentation in all
model trainings. All models including the baseline models
are trained for 32 epochs, with batch size 4096, initial learn-
ing rate 1e-3 and weight decay 0.1. We also used a cosine
learning rate scheduler with 5000 warmup iterations.

C. More results

C.1. Results over separate datasets

In Figure 1, we show the zero-shot classification on 14
datasets by adding different image-caption pairs into the
ImageNet-1K, i.e. the methods compared in Table 5 in the
main text. UniCL takes the advantages of learning rich con-
cept coverage from image-text pairs: On most of the datasets,
it outperforms the baseline, especially on fine-grained classi-
fication tasks such as Food101 and OxfordPets.
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Table 1. Statistics

Dataset #Concepts Vocab. Size Train size Test size Evaluation metric Source link Linear Probe Zero-shot

Food-101 102 139 75,750 25,250 Accuracy Tensorflow X X
CIFAR-10 10 10 50,000 10,000 Accuracy TensorFlow X X

CIFAR-100 100 100 50,000 10,000 Accuracy TensorFlow X X
SUN397 397 432 19,850 19,850 Accuracy Tensorflow X

Stanford Cars 196 291 8,144 8,041 Accuracy Stanfold Cars X
FGVC Aircraft (variants) 100 115 6,667 3,333 Mean-per-class FGVC website X
VOC2007 classification 20 20 5,011 4,952 11-point mAP voc2007 X X

Describable Textures 47 47 3,760 1,880 Accuracy TensorFlow X X
Oxford-IIIT Pets 37 53 3,680 3,669 Mean-per-class Oxford-IIIT Pet X X

Caltech-101 102 122 3,060 6084 Mean-per-class TensorFlow X X
Oxford Flowers 102 102 147 2,040 6,149 Mean-per-class TensorFlow X X

MNIST 10 10 60,000 10,000 Accuracy TensorFlow X
FER 2013 ∗ 8 12 32,298 3,589 Accuracy Kaggle fer2013 X X

STL10 10 10 5,000 8,000 Accuracy TensorFlow X
GTSRB ∗ 43 85 26,728 12,630 Accuracy GTSRB website X

PatchCamelyon 2 6 294,912 32,768 Accuracy TensorFlow X X
UCF101 ∗ 101 153 9,537 3783 Accuracy TensorFlow X

Hateful Memes 2 2 8,500 500 ROC-AUC FaceBook X X
EuroSAT 10 20 5,000 5,000 Accuracy TensorFlow X
Resisc45 45 59 3,150 25,200 Accuracy TensorFlow X

Rendered-SST2 2 2 6,920 1,821 Accuracy OpenAI X

Table 2. Statistics of datasets used in zero-shot and linear probe. ∗ indicates dataset whose train/test size we obtained is slightly different
from Table 9 in [5]. Xindicates the dataset is used in this setting. The datasets are chosen based on the criterion if we can reproduce the
numbers reported from [5] and their availability.
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Figure 1. Zero-shot classification on 14 datasets by adding different image-caption pairs into the ImageNet-1K. The averaged scores of each
method is reported in the legend. The gain between UniCL on mixed data (ImageNet1K+GCC15M) and image-label data (ImageNet1K) is
shown.

C.2. Results with larger vision backbone

In our main submission, we used Swin-Tiny as the visual
backbone to study how our UniCL perform when trained
on the combination of image-label data ImageNet-21K and
image-text pairs YFCC-14M in Table 6. Here, we investigate
whether increase the capacity of the vision backbone can
further improve the representation learning.

As shown in Table 3, we observe consistent trend as
in Table 6 of our main submission. Though using similar
amount of image-text-label corpus, combining two type of
data can significantly improve the zero-shot recognition per-
formance on both ImageNet-1K (8.6 points) and other 14
datasets in average (11.0 points). When using the full set of
ImageNet-21K and YFCC-14M, both performance can be
further improved significantly. These results suggest that our
method is agnostic to different model sizes and thus a generic

Training Data Method Zero-shot

ImageNet-1K 14 datasets

YFCC-14M CLIP 32.4/30.1 37.5/36.3
ImageNet-21K UniCL 29.9/28.5 42.4/37.8
YFCC-14M(half)+ImageNet-21K(half) UniCL 41.0/36.4 48.5/45.5
YFCC-14M+ImageNet-21K UniCL 43.8/40.5 52.2/49.1

Table 3. Ablation studies on the training datasets and tasks. We use
Swin-Base [4] as the vision backbone. Each model is pre-trained
with 32 epochs following CLIP [5]. Numbers before and after each
“/” are with Swin-Base and Swin-Tiny, respectively.

learning paradigm for visual-semantic representations. For
comparison, we also list the numbers for Swin-Tiny mod-
els after each “/”. Clearly, increasing the visual encoder
size brings substantial gains in all cases, and particularly
significant for the combination of both data types.
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Training Data Method Object Detection

box mAP mask mAP

YFCC-14M CLIP 39.9 37.3
ImageNet-21K UniCL 41.4 38.6
YFCC-14M(half)+ImageNet-21K(half) UniCL 41.9 39.0
YFCC-14M+ImageNet-21K UniCL 43.1 40.0

Table 4. Object detection transfer learning with different models.
We use the pretrained Swin-Tiny models listed in Table 6 of our
main submission as the vision backbone.

C.3. Transfer to object detection

In the Table 5 of our main submission, we mainly stud-
ied whether image-text pairs can bring benefits to object
detection transfer learning compared with the models solely
trained on image-label data. As we demonstrated in Ta-
ble 6 of our main submission, image-label data can help to
learn more discriminative representations, and thus bene-
fits ImageNet-1K finetuning and linear probing. Here, we
further study whether the learned representations can gener-
alize to object detection task as well. Specifically, we use the
Swin-Tiny models pretrained in Table 6 as the vision back-
bones and train a Mask R-CNN model with 1× schedule
following the default settings in Swin Transformer [4] based
on Detectron2 [8]. In Table 4, we can see combining two
data types with similar amount clearly improve the object
detection performance by around 2 points for both box and
mask mAP, compared with the CLIP-based model trained
on YFCC-14M. This further validates our note that represen-
tations learned from pure image-text pair data usually lack
the discirminative ability required by transfer learning to
image recognition and object detection. As expected, using
the full set (last row) brings further around 1 point improve-
ment for both metrics. Along with the reported numbers
in Table 5 of our main submission, these results together
imply that adding image-text pairs to image-label data and
the other way around can universally help to learn a better
visual representations compared with the individual counter-
parts. Adding image-text pairs data can enrich and smoothen
the semantic space which may implicitly prompt distinctive
representations for the concepts in COCO object detection,
while adding image-label data directly imposes the pressure
to learn more discriminative representations.

D. More analysis
D.1. Concept distribution

The concepts residing in the training data is arguably
crucial to the model learning. Both CLIP [5] and ALIGN [2]
exhaustively collect hundreds of millions of image-text pairs
to cover as many visual concepts as possible. Though the
datasets used in our experiments are at much smaller scale,
we are still interested in the concept distributions of different
datasets. In Fig. 2, we show the occurrences of top 1000

Dataset GCC-3M GCC-12M YFCC-14M

GCC-3M 100% 46.5% 50.2%
GCC-12M 46.5% 100% 37.9%
YFCC-14M 50.2% 37.9% 100%

Table 5. Overlap ratio of top 10k concepts among three image-text
pair datasets, GCC-3M, GCC-12M and YFCC-14M. The matrix is
symmetric.

concepts in GCC-3M, GCC-12M and YFCC-14M. Along
with the remaining concepts that do not show here, all three
datasets have extreme long-tail distributions. For example,
the most frequent concept “view” in GCC-12M appears over
185,363 times, while the 10k-th concept “candle holder” only
appears 501 times, knowing that there are more than 584k
concepts in the whole set.

Interestingly, we find the overlap of most common con-
cepts across three datasets is lower than what we expect.
Table 5 shows the overlap ratios of top 10k concepts among
three datasets. These relatively lower overlapping indicates
the sufficient diversities and complementary among them.

D.2. Concept coverage

Given the concept distributions above, we further investi-
gate the concept coverage between training datasets and val-
idation datasets. In Table 6, we calculate the coverage ratio
to be the percentage of concepts mentioned by the pretrain-
ing data, including ImageNet-1K, ImageNet-21K, GCC-3M,
GCC-12M and YFCC-14M. Coverage ratios equal or larger
than 50% are highlighted.

Accordingly, for image-label dataset ImageNet-1K, it has
some overlaps with CIFAR-100 (24.0%) and Caltech-101
(24.5%). This may explain why the zero-shot performance
on these two datasets shown in Fig. 1 is relative higher. In
contrast, we also notice that even with less or no coverage,
the model pretrained on ImageNet-1K with our method still
attain reasonably good zero-shot performance on datasets
like CIFAR-10, Flowers102, Oxford Pet, etc.

Similarly, for ImageNet-21K, it covers a certain propor-
tion of concepts in the validation sets, such as CIFAR-10,
CIFAR-100, Caltech-101, etc, and we did observe high zero-
shot recognition performance on them in the Table 6 of our
main submission. Nevertheless, for other datasets like Hate-
ful Memes, PatchCamelyon, there are zero concept overlaps,
while our model still realizes reasonable performance. This
indicates that our model is not just memorizing the concepts
appearing in the training datasets, but also learns to under-
stand the underlying structures of different concepts, which
has been also demonstrated in Fig. 5 of our main submission.

Finally, we find image-text pairs data have higher cov-
erage of concepts than image-label datasets almost on all
validation sets. Among the three image-text pair datasets,
GCC-12M has relatively higher coverage than the other two



Figure 2. From top to bottom, bar charts are top 1000 most frequent concepts in GCC-3M, GCC-12M and YFCC-14M, respectively. We
trim the heights of most frequent concepts for better display. For clarity, we display the concept name for every 25 concepts.

datasets. This may also explain why we observe better per-
formance in the comparisons shown in Table 5 of our main
submission. However, we also notice that higher concept
coverage does not necessarily means better zero-shot perfor-
mance. For example, even though all of these three datasets
have a fully coverage of concepts in CIFAR-10 and CIFAR-
100, adding them into the pretraining hurts the performance
as shown in Fig. 1. We suspect there might be some signifi-
cant gaps in the image domain between the pretraining and
validation datasets even though they share common seman-
tic concepts. Moreover, images in image-text pairs usually
contain multiple objects, the coverage of concepts does not
necessarily means the model can learn to grounding the con-
cepts to the specific image contents. How to better leverage

the image-text pair data and build a more gounded visual
understanding worth further studies.

D.3. Concept visualizations

In Fig. 3, we further show the concept embeddings for
two models as in Fig. 4 in our main submission. Fig. 3
left shows the model trained only on ImageNet-1K while
right shows the model trained jointly with ImageNet-1K
and GCC-15M. The model trained with two type of data
understand the novel concepts from ImageNet-21K much
better than the left one. For example, the left model put
“porthole” and porcupine close to each other but the former
is a circular window and latter is an animal. In contrast, the
model at right side can easily find the “porcuponefish” as the



Dataset ImageNet-1K ImageNet-21K GCC-3M GCC-12M YFCC-14M

Name #Concepts Vocab. Size Cover. #Img/C. Cover. #Img/C. Cover. #Img/C. Cover. #Img/C. Cover. #Img/C.

ImageNet-1K 1,000 1,233 100% 1300 0% 0 45.3% 247.0 78.5% 851.1 69.3% 1930.8
Food-101 102 139 4.0% 1300.0 20.8% 650.0 21.8% 39.8 58.4% 250.8 67.3% 408.8
CIFAR-10 10 10 0.0% 0.0 90.0% 650.0 100.0% 6175.4 100.0% 19969.8 100.0% 32998.9

CIFAR-100 100 100 24.0% 1300.0 65.0% 650.0 95.0% 3928.4 99.0% 15628.5 99.0% 18303.2
SUN397 397 432 5.0% 1300.0 28.5% 650.0 48.1% 818.9 65.5% 2355.4 66.5% 7043.2

Stanford Cars 196 291 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0 0.0% 0.0
FGVC Aircraft (variants) 100 115 0.0% 0.0 0.0% 0.0 0.0% 0.0 22.0% 4.1 0.0% 0.0
VOC2007 classification 20 20 0.0% 0.0 75.0% 650.0 85.0% 14721.6 85.0% 19934.8 85.0% 31448.8

Describable Textures 47 47 0.0% 0.0 4.3% 650.0 14.9% 8.9 27.7% 53.2 36.2% 181.7
Oxford-IIIT Pets 37 53 5.4% 1300.0 13.5% 650.0 10.8% 80.9 64.9% 134.0 37.8% 169.0

Caltech-101 102 122 24.5% 1300.0 43.1% 650.0 66.6% 1633.8 83.3% 5249.7 87.3% 5017.7
Oxford Flowers 102 102 147 10.0% 1300.0 40.2% 650.0 17.6% 53.2 50.0% 194.3 65.7% 422.7

MNIST 10 10 0.0% 0.0 0.0% 0.0 40.0% 0.8 100.0% 46.0 90.0% 68.8
FER 2013 ∗ 8 12 0.0% 0.0 8.3% 650.0 25.0% 5.9 41.7% 29.2 41.7% 11.5

STL10 10 10 0.0% 0.0 100% 650.0 100.0% 8778.6 100.0% 28547.6 100.0% 45587.5
GTSRB ∗ 43 85 0.0% 0.0 0.0% 0.0 2.3% 12.7 2.3% 52.9 2.3% 551.3

PatchCamelyon 2 6 0.0% 0.0 0.0% 0.0 0.0% 0.0 50.0% 143.0 50.0% 15.0
UCF101 ∗ 101 153 0.0% 0.0 0.0% 0.0 0.0% 0.0 51.5% 66.4 0.0% 0.0

Hateful Memes 2 2 0.0% 0.0 0.0% 0.0 50.0% 79.5 50.0% 2742.5 50.0% 321.5
EuroSAT 10 20 0.0% 0.0 0.0% 0.0 20.0% 2946.6 30.0% 5266.3 30.0% 15458.7
Resisc45 45 59 8.9% 1300.0 26.7% 650.0 71.1% 3688.6 75.6% 7572.0 80.0% 26317.6

Rendered-SST2 2 2 0.0% 0.0 50.0% 650.0 50.0% 1.0 100.0% 114.0 100.0% 1259.0

Table 6. Statistics of concept coverage between training and validation dataests. ∗ indicates dataset whose train/test size we obtained is
slightly different from Table 9 in [5]. “Cover.” denotes the coverage ratio of concepts in target dataset by the training dataet. For those with
non-zero coverage ratio, we also list the average number of images for each concept. For ImageNet-1K and ImageNet-21K, we estimate the
number of images per concept by dividing the total number of images by total number of concepts, which are 1300 and 650, respectively

close neighbor. Similarly, the left model mix “goblet” and
“coverlet”, probably because they share the same suffix. Our
model on right side finds one of the most matched concepts
“liqueur glass” which is semantically and visually similar to
the query concept. Similar trend is also observed in Fig. 4.
All these visualizations demonstrate that our model trained
with both type of data has learned the visually-grounded
semantic meanings for various concepts.
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Figure 3. Similar to Fig. 4 in our main submission, we further visualize the t-SNE embedding for visual concepts with models trained with
ImageNet-1K (left) and ImageNet-1K+GCC-15M (right).

Figure 4. Similar to Fig. 3, we visualize the t-SNE embedding for another random set of visual concepts with models trained with
ImageNet-1K (left) and ImageNet-1K+GCC-15M (right). Clearly, our model learned from the combination of image-label and image-text
pairs can understand more number of visual concepts.
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