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Appendix

A.1. Datasets
A.1.1. Pre-training Dataset

LUPerson [5] consists of 4,180,243 person images of over
200K identities extracted from 46,260 YouTube videos.
YOLO-v5 trained on MS-COCO is utilized to extract each
person instance in the sampled frame. It is worth noting
that the LUPerson is large enough to support unsupervised
person ReID feature learning.

A.1.2. Fine-tuning Datasets

CUHK03 [10] contains 13,164 images of 1,360 pedes-
trians. Each identity is observed by 2 cameras. Note
that CUHK03 offers both hand-labeled and DPM-detected
bounding boxes, and the former is adopted in this paper.
Market1501 [22] contains 32,668 person images of 1,501
identities captured by 6 cameras. The training set consists
of 12,936 images of 751 identities, the query set consists of
3,368 images, and the gallery set consists of 19,732 images
of 750 identities.
PersonX [14] is a large-scale data synthesis engine, which
contains 1,266 manually designed identities and editable vi-
sual variables. Each identity is captured by 6 cameras.
MSMT17 [18] contains of 126,441 images of 4,101 iden-
tities captured by 15 cameras. The training set consists of
30,248 person images of 1,041 identities, the query set con-
sists of 11,659 images, and the gallery consists of 82,161
images of 3,060 identities.

A.2. More Details about Data Augmentation
Data augmentation plays a crucial role in self-supervised

contrastive learning. We adopt popular augmentation op-
erations including resizing, cropping, random grayscale,
Gaussian blurring, horizontal flipping, and RandomErasing.
Note that we abandon color jitter since person ReID is ex-
tremely dependent on color information [5].
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A.3. Additional Results
A.3.1. More Results for Supervised ReID

In Section 4.2 of the main body, we demonstrate that
our UP-ReID can benefit the supervised ReID methods and
show the results in Table 1. Here, we present the remaining
results. Table A1 shows the results of using different pre-
trained models in the supervised fine-tuning ReID method
PCB [15] on CUHK03, Market1501, and PersonX.

Table A1. Comparison of PCB method using different pre-trained
models on three datasets in terms of mAP/Rank1 (%).

Model CUHK03 Market1501 PersonX
INSUP 59.5/69.9 78.0/92.6 80.9/92.7
MoCo v2 58.3/72.8 79.3/92.9 80.7/92.9
UP-ReID 60.1/74.1 80.0/93.1 81.7/93.2

We also show the comparison of the convergence
speed of applying different pre-trained models in method
MGN [17] at the early stage of fine-tuning in Figure A1.
As can be seen, UP-ReID achieves a faster convergence ra-
pidity compared with MoCo v2 and INSUP on all the three
datasets, which further demonstrates that the proposed UP-
ReID can better benefit downstream ReID tasks.

A.3.2. More Comparisons with State-of-the-Arts

In Section 4.4 of the main body, we have shown some
comparison results between our UP-ReID and state-of-the-
art methods. Here, we extend the results in Table 3 and
show the complete results of the comparison between UP-
ReID and state-of-the-art methods in Table A2 on three
datasets, including CUHK03, Market1501, and MSMT17.
As we can see, MGN with our UP-ReID outperforms the
other methods by at least 7.9%/6.5% and 1.6%/1.0% in
terms of mAP/Rank1 on CUHK03 and Market1501, re-
spectively. On the MSMT17 dataset, the TransReID [8]
achieves better performance. However, TransReID adopts
transformer-based network and utilizes camera information
additionally.
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(a) mAP learning curve on CUHK03 (b) mAP learning curve on Market1501 (c) mAP learning curve on PersonX

Figure A1. mAP learning curves of different pre-trained models in MGN [17] on three datasets (CUHK03, Market1501, and PersonX)
with the same training schedule.

Table A2. Complete performance (%) comparisons with state-of-the-art approaches on CUHK03, Market1501, and MSMT17. The best
results are marked as bold and the second ones are masked by underline.

Method CUHK03 Market1501 MSMT17
mAP cmc1 mAP cmc1 mAP cmc1

PCB [15] (ECCV’18) 57.5 63.7 81.6 93.8 - -
MGN [17] (ACM MM’18) 70.5 71.2 86.9 95.7 - -
ABDNet [2] (ICCV’19) - - 88.3 95.6 60.8 82.3
BDB [4] (ICCV’19) 76.7 79.4 86.7 95.3 - -
OSNet [24] (ICCV’19) 67.8 72.3 84.9 94.8 52.9 78.7
P2Net [6] (ICCV’19) 73.6 78.3 85.6 95.2 - -
SCAL [1] (ICCV’19) 72.3 74.8 89.3 95.8 - -
DSA [19] (CVPR’19) 75.2 78.9 87.6 95.7 - -
DGNet [23] (CVPR’19) - - 86.0 94.8 52.3 77.2
GCP [13] (AAAI’20) 75.6 77.9 88.9 95.2 - -
SAN [9] (AAAI’20) 76.4 80.1 88.0 96.1 55.7 79.2
ISP [25] (ECCV’20) 74.1 76.5 88.6 95.3 - -
GASM [7] (ECCV’20) - - 84.7 95.3 52.5 79.5
RGA-SC [20] (CVPR’20) 77.4 81.1 88.4 96.1 - -
HOReID [16] (CVPR’20) - - 84.9 94.2 - -
AMD [3] (ICCV’21) - - 87.1 94.8 - -
PGFL-KD [21] (ICCV’21) - - 87.2 95.3 - -
TransReID [8] (ICCV’21) - - 89.5 95.2 67.4 85.3
PAT [11] (CVPR’21) - - 88.0 95.4 - -
MGN+R50 (UP-ReID) 85.3 87.6 91.1 97.1 63.3 84.3

A.4. Discussion about Hard Mining Strategy

In Section 3.4 of the main body, we introduce our hard
mining strategy in detail and experimentally prove its effec-
tiveness in Section 4.5. Here we further discuss two points
and give more insights about this design. The first one
is that we choose hard positive samples and hard negative
queues in a fixed way, which is an offline scheme instead
of an online scheme. Would an online scheme be better?
The second one comes from the positive samples selection.
In Section 3.3 of the main body, we emphasize that all 2M
patch-level instances are partitioned from the input image x
actually. So, for each patch feature qi ∈ Xq , any of patch

feature k+p ∈ Xk (i, p ∈ {1, ...,M}) could be its positive
sample. So, why do we have to choose patches at the same
horizontal position instead of other patches as the positive
samples?

To answer the aforementioned questions and verify the
reasonableness of our selection strategy, we compare it with
several other schemes. Random Positive Selection: for
patch i, we randomly select a patch partitioned from the
same pedestrian but located differently as the positive sam-
ple. Online Positive Selection: instead of finding a hard
positive patch sample for each query patch i, we only se-
lect the hardest positive pair among all the M × M posi-



tive pairs. Horizontally Symmetric Positive Selection: the
proposed selection strategy wherein two horizontally sym-
metric patches are selected as a positive pair. Note that all
three schemes have the same rule to select negative samples.
We show the curves of the patch-wise contrastive loss in the
intrinsic contrastive constraint under these three selection
strategies in Figure A2. As we can see, the loss value in the
scheme of “Random-P” is unstable and cannot reach a con-
vergence. On the other hand, the loss value in the scheme
of “Online-P” converges extremely slowly.

We analyze that the scheme of “Random Positive Selec-
tion” and “Online Positive Selection” suffer from misalign-
ment and can not guarantee that the selected positive pairs
have similar visual information. Take the “Random Positive
Selection” as an example, for qi ∈ Xq , we randomly select
k+p ∈ Xk as the corresponding positive sample. However,
without any constraint, the visual information contained in
qi and k+p may be very different (e.g., qi represents the head
of a person, while k+p represents the shoes), which has a
negative impact on the pre-training process.

Our hard mining strategy (i.e., Horizontally Positive
Selection) is based on the prior knowledge that persons
are horizontally symmetric, which assures that the positive
pairs are semantically matched. This avoids the negative
impact caused by misalignment on the pre-training process.

Figure A2. The curves of the patch-wise contrastive loss in
different selection strategies. “Horizontally-P”, “Random-P”,
and “Online-P” mean Horizontally Symmetric Positive Selection,
Random Positive Selection, and Online Positive Selection, respec-
tively.

A.5. Feature Visualization
As discussed in the main body, model pre-trained by our

UP-ReID has better discriminative feature learning ability
than that pre-trained by MoCo v2. We fine-tune these two
models in BOT [12] on Market1501 for a few epochs, re-
spectively. Then, we visualize the feature responses of our
UP-ReID and MoCo v2 in Figure A3. As we can see, in

the downstream tasks, UP-ReID pre-trained model could
capture identity-related attributes (e.g., trouser color) and
fine-grained features (e.g., shoes color) better than MoCo
v2 pre-trained model, which demonstrates the effectiveness
of the proposed designs, like the intrinsic contrastive con-
straint, in our UP-ReID.
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Figure A3. Visualization of the features corresponding to the
MoCo v2 and our UP-ReID schemes.

A.6. Broader Impacts

As for positive impact, we demonstrate that a suitable
pre-trained model can benefit downstream person ReID
tasks with higher accuracy and faster convergence speed.
This will improve efficiency and effectiveness of a series of
ReID tasks and save human costs in these areas.

As for negative impact, many public ReID datasets are
coming from unauthorized surveillance data, which may
cause an invasion of privacy and other security issues. Thus,
the collection process should be public and make sure that
human subjects in the datasets are aware that they are being
recorded. Strict regulation should also be established for
ReID datasets to avoid ethical issues.
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