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1. Implementation Details of GP-UNIT
1.1. Dataset and Model

SynImageNet-291. For synthesized data, we use the official BigGAN-deep-128 model on TF Hub [3] to generate corre-
lated images associated by random latent codes for each of the 291 domains including dogs, wild animals, birds and vehicles.
Their class indexes in the original ImageNet 1000 classes are 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 104, 105, 106, 127, 128, 129, 131, 132,
133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162,
163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212,
213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237,
238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262,
263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287,
288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342,
343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367,
368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 380, 382, 383, 384, 385, 386, 387, 388, 407, 436, 468, 511, 555, 586,
609, 627, 654, 656, 675, 717, 734, 751, 757, 779, 803, 817, 829, 847, 856, 864, 866, 867, 874. We apply truncation trick
to the latent codes, and obtain 3K images with truncation threshold of 0.5 and 3K images with truncation threshold of 1.0.
After filtering low-quality ones, we finally obtain 655 images per domain that are linked across all domains, 600 of which
are for training. For Bird↔ Dog or Car, four classes of birds (class index: 10, 11, 12, 13), four classes of dogs (class index:
214, 218, 222, 232) and four classes of cars (class index: 436, 511, 627, 656) are used. An overview of images in the 291
domains in synImageNet-291 is shown in Figs. 1-2

ImageNet-291. For each domain X , we first calculate the mean style feature SX of the images in X from synImageNet-
291. The style feature is defined as the channel-wise mean of the conv5 2 feature of pre-trained VGG [17]. Then, we apply
HTC [4] to ImageNet [15] to detect and crop the object regions in the domain X . Small objects are filtered. The remaining
images are ranked based on the similarity between their style features and SX . We finally select the top 650 images to
eliminate outliers, with 600 images for training and 50 images for testing.

Other datasets. AFHQ [5] uses 4K training images and 500 testing images per domain. CelebA-HQ [9] uses 29K training
images and 1K testing images. MS-COCO [13] uses 2K giraffe images for training and 197 images for testing. Yosemite [8]
use 1,231 summer images and 962 winter images for training, and use 309 summer images and 238 winter images for testing.
Metface [10] uses 1,336 images for training.

License of the Dataset. AFHQ [5] and CelebA-HQ [9] are under CC BY-NC 4.0 license. MS-COCO [13] is un-
der CC BY 4.0 license. Metface [10] is under CC BY-NC 2.0 license. ImageNet [15] provides the terms of access at
https://www.image-net.org/download. Head Pose Image Database [6] provides the terms of use “This database
can be used for any purpose” (http://crowley-coutaz.fr/Head%20Pose%20Image%20Database.html).
Images of TGaGa [18] are kindly provided by the authors. Yosemite are provided by https://github.com/junyanz/
pytorch-CycleGAN-and-pix2pix/blob/master/docs/datasets.md.

License of the Model. HTC [4] and BigGAN [3] are under Apache License 2.0. COCO-FUNIT [16] is under N-
VIDIA Source Code License for Imaginaire. MUNIT [8] is under CC BY-NC-SA 4.0 license. StarGAN2 [5] is under CC
BY-NC 4.0 license. U-GAT-IT [11] is under MIT License. TraVeLGAN [2] is provided at https://github.com/
KrishnaswamyLab/travelgan without claiming licenses. TraVeL is designed for 128 × 128 images and does not
support multi-modal translation. In the experiment, we upsample its results to 256× 256 to calculate FID.
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Figure 1. An domain overview of synImageNet-291 (Part I).
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Figure 2. An domain overview of synImageNet-291 (Part II).
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1.2. Network Architecture

Let “Cc(k)/s” denote a Convolution-Normalization-Activation layer, with k×k convolution kernels, output channel num-
ber c and stride s. If not specified, the default value of k and s are 3 and 1, respectively. Let “FCc” be a fully connection layer
with output dimension c. “↑” denotes a 2× nearest upsampling layer. Let “Resc” denote a Residual Block [7] with output
channel number c and “AdaResc” denote a conditional “Resc” with each convolution layer followed by an AdaptiveInstan-
ceNorm layer.

Stage I. The content encoder Ec consists of: C64/1-C64/2-C64/1-C128/2-C128/1-C256/2-C256/1-C512/2-C512/1-
C512/2-C512/1-C1/1, where “C” is a Convolution-InstanceNorm-LeakyReLU layer.

The style encoder Es consists of: C64/2-C128/2-C256/2-C512/2-C512/2-C512/2, where “C” is a Convolution-
LeakyReLU layer.

The decoder F consists of: C512-C512-C512-C512↑-C512↑-C256↑-C128↑-C64↑-C3, where “C” is a Convolution-
AdaptiveInstanceNorm-ReLU layer except the input layer and output layer. The input layer “C512” is a Convolution-
InstanceNorm-LeakyReLU layer and the output layer “C3” is a Convolution-Tanh layer. The decoder Fs architecture consists
of: {C512-C512-C512-C512↑-C512}-C3. Layers in {·} are shared with F and are conditioned by domain labels, while the
remaining layers in F are conditioned by the style features.

The classifier C consists of: C32(3)/2-C64(3)/1-C292(4)/1-FC292, where “C” is a Convolution-LeakyReLU layer.
Stage II. The architecture of Ec is the same as in Stage I.
The style encoder Es consists of: C64(7)/1-C128(4)/2-C256(4)/2-C256(4)/2-C256(4)/2-C256(4)/2-GAvgPool-FC256-

FC64-FC256, where “C’ is a Convolution-ReLU laye. “GAvgPool” is a global averaging pooling layer. “FC” is a fully
connection layer followed by a ReLU layer.

The generator G consists of: AdaRes512-AdaRes512↑-AdaRes512-DSC↑-AdaRes256-DSC↑-AdaRes128↑-AdaRes64↑-
AdaRes64-C3(7), where “C” is a Convolution-Tanh layer and “DSC” is the proposed dynamic skip connection.

The discriminator D consists of: C64(3)-Res128↓-Res256↓-Res512↓-Res512↓-Res512↓-Res512↓-C512(4)-C512(1),
where “C” is a Convolution-InstanceNorm-LeakyReLU layer. “↓” is a 2D average pooling layer with kernel size 2 × 2
within the Residual Block for downsampling.

For dynamic skip connection, in the main paper, the activation σ in Eq. (8) is a Sigmoid layer. In Eq. (9), σ is a ReLU-Tanh
layer to make the mask more sparse. We do not use any activation in Eq. (11) in our implementation.

1.3. Network Training

Stage I. We adopt the Adam optimizer with a fixed learning rate of 0.0002. Each iteration uses 16 image pairs from
SynImageNet-291 and 16 images from ImageNet-291+CelebA-HQ. We use one NVIDIA Tesla V100 GPU to train our
network for 4 epoches (about 44K iterations), which takes about 11 hours.

Stage II. We adopt the Adam optimizer with a fixed learning rate of 0.0001. The batch size is set to 16. We use one
NVIDIA Tesla V100 GPU to train our network for 75K iterations, which takes about 46 hours. To compute the style loss, fD
uses the features of the 5th Resblock for Cat↔ Human Face, and the 4th Resblock for all other tasks.
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2. Supplementary Experimental Results of GP-UNIT
2.1. Comparison with State-of-the-Art Methods

2.1.1 Visual comparison and multi-modal translation

In addition to the examples shown in the main paper, we show more visual comparison results with TraVeLGAN [2], U-GAT-
IT [11], MUNIT [8], COCO-FUNIT [16] and StarGAN2 [5] in Figs. 3-12. Our method surpasses these methods in:
• more accurate content correspondences with the input images;
• less artifacts caused by the domain-specific information leakage form the input images;
• better matched shape and appearance features with the target domain;
• more realistic image details.

input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 3. Visual comparison on Male→Female with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and StarGAN2 [5].
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We further show multi-modal translation outputs generated by GP-UNIT from four random style features, demonstrating
that our method strikes a good balance between image quality and intra-domain diversity.

input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 4. Visual comparison on Female → Male with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and Star-
GAN2 [5].
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input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 5. Visual comparison on Dog → Cat with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and StarGAN2 [5].
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input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 6. Visual comparison on Cat → Dog with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and StarGAN2 [5].
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input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 7. Visual comparison on Human Face → Cat with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and Star-
GAN2 [5].
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input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 8. Visual comparison on Cat → Human Face with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and Star-
GAN2 [5].

11



input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 9. Visual comparison on Dog → Bird with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and StarGAN2 [5].

12



input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 10. Visual comparison on Bird → Dog with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and StarGAN2 [5].
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input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 11. Visual comparison on Car → Bird with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and StarGAN2 [5].
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input multi-modal translation results by GP-UNIT MUNIT COCO-FUNIT StarGAN2TraVeLGAN U-GAT-IT

Figure 12. Visual comparison on Bird → Car with TraVeLGAN [2], U-GAT-IT [11], MUNIT [8], COCO-FUNIT [16] and StarGAN2 [5].
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2.1.2 User study

We conduct a user study to evaluate the input-output content consistency and overall translation performance. A total of 25
subjects participate in this study to select the best ones from the results of six methods. Because in some tasks like Male↔
Female, the performance of each method is similar, we allow multiple selections. For each selection, if a user select results
fromN methods as the best results, those methods get 1/N scores, and other methods get 0 scores. A total of 2,500 selections
on 50 groups of results (Every first five groups of Figs. 3-12) are tallied. Table 1 and Table 2 demonstrate the average user
scores, where the proposed method receives notable preference for both content consistency and overall performance.

Table 1. User preference scores in terms of content consistency. Best scores are marked in bold.

Task Male↔ Female Dog↔ Cat Human Face↔ Cat Bird↔ Dog Bird↔ Car Average

TraVeLGAN 0.017 0.015 0.004 0.015 0.008 0.012
U-GAT-IT 0.195 0.099 0.032 0.022 0.032 0.076
MUNIT 0.111 0.016 0.078 0.000 0.022 0.045
COCO-FUNIT 0.092 0.104 0.036 0.057 0.036 0.065
StarGAN2 0.232 0.310 0.170 0.175 0.106 0.199
GP-UNIT 0.353 0.456 0.680 0.731 0.796 0.603

Table 2. User preference scores in terms of overall preference. Best scores are marked in bold.

Task Male↔ Female Dog↔ Cat Human Face↔ Cat Bird↔ Dog Bird↔ Car Average

TraVeLGAN 0.006 0.012 0.000 0.000 0.009 0.006
U-GAT-IT 0.162 0.079 0.001 0.004 0.005 0.050
MUNIT 0.099 0.007 0.053 0.000 0.009 0.033
COCO-FUNIT 0.098 0.085 0.000 0.033 0.004 0.044
StarGAN2 0.240 0.240 0.153 0.157 0.063 0.171
GP-UNIT 0.394 0.576 0.793 0.805 0.910 0.696

2.1.3 Content correspondence

Discussion on content correspondence. In this paper, we mainly use user scores to evaluate the content consistency.
For objective evaluation, landmark correspondence might be one potential metric. We conduct human/cat face landmark
detection to predict eye and nose correspondences. GP-UNIT is comparable to other baselines in normalized point-to-
point error (GP-UNIT/MUNIT/StarGAN2/COCO-FUNIT/TraVeLGAN: 0.27/0.23/0.19/0.36/0.31). However, these scores
still does not well match the subjective user scores in Table 1. The reason is the content-style trade-off problem as discussed
in Sec. 2.2. A robust method should adjust the locations of facial features to match the target domains, which does not favor
this metric. Since this adjustment is task-dependent, it is nearly impractical to define a universal metric. Therefore, landmark
correspondence is less explored as evaluation metrics in UNIT baselines. UNIT still lacks a good objective evaluation metric
for content consistency, which is an important research direction.
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2.2. Comparison with TGaGa

In Fig. 13, we present translation results with large geometric deformations. As one of the most related works to ours
that deal with drastic geometric deformations, TGaGa [18] and our method both effectively build geometric correspondences
between two distant domains. The main superiority of GP-UNIT over TGaGa lies in more realistic texture generation. We
compare with TGaGa on multi-modal generation in Fig. 14. The results of TGaGa are blurry and our method generates more
vivid details.

For large geometric deformations, there is an inherent content-style trade-off problem, which is valuable to further discuss:
• Content-style trade-off: Due to the inherent differences in the proportions of facial features of different species, it is

impossible to generate a realistic human or dog face from a cat face with the locations of eyes/nose/mouth unchanged. A
robust method should adjust the locations of such facial features to match the style of target domains while maintaining
the original geometry as much as possible. Therefore, there is a trade-off between realism and content consistency.
• Cycle consistency overemphasizes content. Standard cycle consistency is often too restrictive and results in only

texture transfer without geometry adjustment. Therefore, methods like MUNIT overemphasize content consistency,
sacrificing realism as in Figs. 5-6.
• GP-UNIT strikes a good balance. TGaGa solves this problem with explicit geometry adjustment, while we learn a

high-level correspondence based on which only necessary mid-level correspondences are then added. It can be seen in
Fig. 13(a) and Fig. 14 that both TGaGa and GP-UNT successfully adjust the geometry, but in our results, the locations
of the facial features better match the input (although not exactly the same), which proves that GP-UNIT strikes a better
balance between realism and content consistency than TGaGa.

input TGaGa GP-UNIT input TGaGa GP-UNIT

(a) Cat ↔Human Face (b) Giraffe ↔ Horse

input

Figure 13. Comparison in geometry-preserving with TGaGa1.

T
G

aG
a

G
P-

U
N

IT

input random cat→ dog sample results

Figure 14. Comparison in multi-modal generation with TGaGa.
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2.3. Comparison with StyleGAN Prior Guided Model

In Figs. 15-16, we compare with UI2I-Style [12] to further analyze the limitation of StyleGAN prior compared to our
method. StyleGAN-based methods achieves unsupervised translations between two domains using finetuning [14, 12]2. By
assuming a small distance between the models before and after finetuning, images generated by the original StyleGAN
and the finetuned StyleGAN belong to two domains, respectively, but have strong content correspondences. Layer-swap is
proposed by [14] to control how many content features from the source domain are preserved. UI2I-Style [12] shows good
results on Face→ Art Portrait and Cat→ Dog with layer- swap at resolution 16× 16. However, when we apply UI2I-Style
to domains with more visual discrepancies like human face and cat, layer- swap results in fused and very unreal results. Even
without using layer- swap, the assumption of a small distance between the models does not hold. Therefore, the content
correspondences using the same latent code are drastically weakened. For example, the position of the eyes of the cats
does not match those of human faces. By comparison, the results of our method are better in content consistency. When it
comes to more challenging Dog↔ Bird, the results of UI2I-Style has little consistency with the input image. Moreover, the
performance of StyleGAN relies on sufficient training data. Even we use the adaptive discriminator augmentation [10], 2.4K
dog training images and 2.4K bird training images seem to be not enough for StyleGAN to produce high-quality results.

In summary, our method is superior to StyleGAN prior guided models in the following aspects:
• GP-UNIT is capable of translations between domains with high discrepancy that StyleGAN prior is not applicable to;
• GP-UNIT can also handle the translation tasks between close domains that StyleGAN prior based methods mainly solve.

We expand their application scenarios;
• Our way of distilling BigGAN prior is different from the mainstream way of using StyleGAN prior, which enables us to

learn universal content features applicable to various tasks without retraining the content encoder, while for each task, a
StyleGAN of a certain domain need to be pretrained;
• Our framework can produce high-quality results with less training data than StyleGAN.

style

co
nt

en
t

Reference-guided translationMulti-modal transaltion

GP-UNIT

UI2I-Style

UI2I-Style

UI2I-Style

layer swap 
at 16×16

layer swap 
at 8×8

no swap

input

Figure 15. Visual comparison on Human Face → Cat with UI2I-Style [12].

1The training data of GP-UNIT and TGaGa does not match (CelebA-HQ and CelebA). For Human Face → Cat, GP-UNIT uses reflect padding to enlarge
the non-face region of the content image to match the scale of our training data.

2Although the W+ space of StyleGAN enables image reconstruction in arbitrary domains, the W+ latent code still does not support semantic editing like
interpolation, style fusing and translation between domains beyond the domains StyleGAN is trained or finetuned on [1]
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Dog→ Bird Bird→ Dog

input

GP-UNIT

UI2I-Style

UI2I-Style

UI2I-Style

layer swap 
at 16×16

layer swap 
at 8×8

no swap

Figure 16. Visual comparison on Dog ↔ Bird with UI2I-Style [12]
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2.4. Ablation Study

2.4.1 Dynamic skip connection
As shown in Fig. 17, without dynamic skip connections (DSC), the content features Ec(x) at the most abstract level can
only provide very rough content information like the position of the head and the ears (the dark region in Ec(x)). And the
resulting dog faces fail to match the pose of the input cat faces. For example, the cat in the fourth row is facing forward, while
the generated dog without DSC is facing left. The dynamic skip connections learn to locate the key eye features and mouth
features through the 301st and the 135th channels of the mask m1, respectively, which effectively provides fine-level content
correspondences. Therefore, our full model can keep the relative position of the nose and eyes as in the input cat faces.

content

style

w/o DSC full model full model ml #135 ml #301w/o DSC Ec(x)

Figure 17. Ablation study on the dynamic skip connection.
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2.4.2 Generative prior distillation
As shown in Fig. 18, if we train our content encoder from scratch along with all other subnetworks in the second stage, like
most image translation frameworks, our model fails to preserve the content features such as the head pose. By comparison,
our pre-trained content encoder successfully exploits the generative prior to build effective content mappings.

style

content

w/o prior full model w/o prior full model w/o prior full model

Figure 18. Ablation study on the generative prior.
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2.4.3 Quantitative comparison

To better understand the effect of the submodules, we perform quantitative comparison in terms of quality, diversity and
content consistency. For content consistency, ten users are invited to select the best one from the results of three configurations
in terms of content consistency. FID, Diversity averaged over the whole testing set and the user score averaged over six groups
of results are presented in Table 3.

• FID: Results of our full model have better quality (low FID)

• Diversity: Three configurations have comparable diversities. With fewer content constraints, results of model without
the generative prior or without dynamic skip connection are more diverse.

• Content Consistency: The generative prior and the dynamic skip connection effectively help our model better capture
high-level and mid-level content correspondences (high Content Consistency)

Table 3. Ablation study on DIF, Diversity and input-output content consistency. Best scores are marked in bold.

Metric FID Diversity Content Consistency

without generative prior 16.11 0.55 0.02
without dynamic skip connection 15.83 0.52 0.15
full model 15.29 0.51 0.83
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2.5. Analysis on Multi-Level Content Feature
In Fig. 19, we analyze the effect of our multi-level content features on Cat→Wildcat. The most abstract Ec(x) only gives

layout cues and can solely generate a rough tiger face without details. Meanwhile, m1 focuses on distinct details (e.g., nose
and eyes in #305, coarse-grained cat whiskers in #321, foreheads in #299), which is enough to generate realistic results with
Ec(x). Finally, m2 pays attention to subtle details (e.g., finer-grained cat whiskers in #169). Therefore, our full multi-level
content features enable us to simulate the extremely fine-level long whiskers in the input as indicated by the difference maps.
Note that the learned attentions are both channel-wise (28 out of 512 for m1 and 2 out of 256 for m2 have large activation)
and spatial-wise sparse. Such reasonable semantic attentions are learned merely via a generation task, without any explicit
correspondence supervision.

(a) input (b) full model (c) w/o m2 (d) w/o m1, m2 (e) (f) (g) (h) 

(i) Ec(x)

(j) channels of m2 (k) channels of m1 with large activation

169

96

3 28 40 90 97 101 135 157

174 191 199 201 248 254 284 299

305 308 321 326 355 372 377 396

402 407 450 452

(a) input (b) full model (c) w/o m2 (d) w/o m1, m2 (e) (f) (g) (h) 

(i) Ec(x)

(j) channels of m2 (k) channels of m1 with large activation

169

96

3 28 40 90 97 101 135 157

191 199 201 245 248 254 284 299

305 308 321 326 355 372 377 396

402 412 450 452

Figure 19. Effect of the multi-level content features. (a): Input. (b)-(d): Results by full model, by setting m1 to 0, by setting both m1 and
m2 to 0, respectively. (e)-(g): Local enlarged region of (a)-(c), respectively. (h): Difference map between (b) and (c). (i): Ec(x). (j)-(k):
Channels of m1 and m2 with activation values greater than 0.2. The channel index is on the top right of each channel.
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In Fig. 20, we analyze the effect of our multi-level content features on Dog → Human Face. The most abstract Ec(x)
only gives layout cues and can solely generate a rough dog face with blurry eyes, noses and mouths in the wrong positions.
Meanwhile, m1 focuses on distinct details (e.g., eyes in #60, #85, #100, #352 and #420), which helps locate eyes, noses
and mouths to generate realistic results with Ec(x). Finally, we observe that there is no valid activation in m2 for fine-level
content correspondences, likely due to the fact that dogs and humans have a large appearance disparity. Therefore, our
method automatically ignores the content features at this level.

(a) input (b) full model (c) w/o m2 (d) w/o m1, m2 (e) (f) Ec(x) (g) channels of m2

(h) channels of m1 with large activation

20 42 60 85 100 164 167

175 320 352 362 420 434

(h) channels of m1 with large activation

20 42 60 85 93 100 102

167 175 181 271 304 309 310

320 352 362 420 434 484

There are
no channels 
with large 
activation

(a) input (b) full model (c) w/o m2 (d) w/o m1, m2 (e) (f) Ec(x) (g) channels of m2

There are
no channels 
with large 
activation

Figure 20. Effect of the multi-level content features. (a): Input. (b)-(d): Results by full model, by setting m1 to 0, by setting both m1 and
m2 to 0, respectively. (e): Difference map between (b) and (c). (f): Ec(x). (g)-(h): Channels of m1 and m2 with activation values greater
than 0.2. The channel index is on the top right of each channel.
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In Fig. 21, we analyze the effect of our multi-level content features on Bird→ Car. The most abstract Ec(x) can solely
generate a rough layout of the car. The meaning of m1 is not as intuitive as other tasks, since birds and cars have almost no
semantic relationship. However, we can still find some reasonable cues. For example, the channels #9, #240 and #258 of m1

focuses on the background areas around the foreground object. The channels #134 and #499 of m1 locate the bird tails and
backs, respectively. Finally, the channel #232 of m2 extracts high-frequency signals (similar to isophote map) from the input
to add texture details in the background, as indicated by the difference map. Such behavior reduces the learning difficulty of
the generator G, allowing G to better focus on the realistic structure synthesis. In Figs. 19-20, we do not find such behavior,
likely due to the fact that the backgrounds in AFHQ [5] and CelebA-HQ [9] are mostly blurry with few high-frequency
details.

(a) input (b) full model (c) w/o m2 (d) w/o m1, m2 (e) (f) Ec(x)

(g) channels of m2 (h) channels of m1 with large activation

214

164 9 22 60 66 70 104 112 134

140 153 180 190 227 240 244 250

258 266 267 285 286 293 351 379

423 436 448 455 499 501 507

9 22 23 66 68 69 70 104 112

134 140 153 180 239 240 250 258 266

275 285 286 293 320 327 351 379 396

423 434 436 448 455 499 501

(a) input (b) full model (c) w/o m2 (d) w/o m1, m2 (e) (f) Ec(x)

(g) channels of m2 (h) channels of m1 with large activation

247

232

164

153

247

232

Figure 21. Effect of the multi-level content features. (a): Input. (b)-(d): Results by full model, by setting m1 to 0, by setting both m1 and
m2 to 0, respectively. (e): Difference map between (b) and (c). (f): Ec(x). (g)-(h): Channels of m1 and m2 with activation values greater
than 0.2. The channel index is on the top right of each channel.
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2.6. Generalization to the Giraffe Domain

In Fig. 22, we show additional translation results between birds and giraffes.

input randomly sampled Giraffe → Bird results input randomly sampled Bird → Giraffe results

Figure 22. Performance on the Giraffe domain from MS-COCO dataset.
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2.7. Style Blending

In Figs. 23-25, we perform a linear interpolation to style feature, and observe smooth changes along with the latent space
from one to another, while keeping the high-level content feature intact.

input

Figure 23. Unseen style blending on cars. The anchor styles are marked by red boxes.
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input

Figure 24. Unseen style blending on human faces. The anchor styles are marked by red boxes.
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input

Figure 25. Unseen style blending on wild animal faces. The anchor styles are marked by red boxes.
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