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1. Supplementary

This supplementary includes additional details that are
not included in the main manuscript due to space limits.

1.1. Feature Visualization

We argue that the main reason for the competitive perfor-
mance achieved by TCL is that it can learn better intra-modal
representations which further contribute to cross-modal rep-
resentation learning. To validate this assumption, we visu-
alize the t-SNE of text features of the current state of the
art [2] (left) and TCL (right) as shown in Figure 1. We
can clearly see that the feature representations from TCL
are more uniformly distributed, which is desirable for intra-
modal retrieval tasks (e.g., text-text retrieval), implying that
TCL can learn better intra-modal representations.

Figure 1. t-SNE visualization of learned features on the COCO
dataset.

1.2. Ablation study of the momentum coefficient

To rule out the probability that different experimental
settings impact model performance, we set momentum coef-
ficient m = 0.995 by following [2]. We retrain our model
on COCO [3] with different m to learn the impact of the
momentum. Table 1 shows the performance on zero-shot
image-text retrieval on Flickr30K [4] and COCO datasets
with the evaluation criteria R@1/R@5/R@10. Different
from MoCo [1] which claims that a reasonable momentum

should be in 0.99∼0.9999, our results suggest that 0.5 per-
forms the best.

m
MSCOCO (5K) Flickr30K (1K)

Text Retrieval Image Retrieval Text Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0.995 60.6 85.9 92.2 46.0 74.1 83.1 67.2 89.3 94.4 52.7 79.0 85.7
0.9 59.7 85.1 92.0 45.5 74.1 83.5 68.0 89.6 94.9 53.3 79.8 86.3
0.5 61.6 85.6 92.2 46.5 74.9 84.0 69.7 89.1 94.3 54.7 79.9 86.9
0.0 61.3 85.8 92.7 46.4 75.2 84.4 70.0 88.6 93.0 53.3 78.5 85.6

Table 1. Ablation study of the momentum coefficient m.
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