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1. Network Architecture
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Figure 1. The network architecture of scattering parameters esti-
mation.

1.1. Scattering Parameters Estimation

We present the network architecture of scattering param-
eters estimation in Fig. 1. We first use six convolutions to
encode the input image. We then use the decoding in dif-
ferent branches for two scattering parameters, including the
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Figure 2. The network architecture of aggregation for fog volume.

atmospheric light L., and attenuation coefficient 5. An av-
erage pooling is applied to the decoded results to obtain the
final scattering parameters.

1.2. Aggregation for Fog Volume

After constructing the fog volume, we use a series of
3D convolutions to aggregate the information. We present
the network architecture of aggregation for fog volume in
Fig. 2. We use two 3D convolutions to aggregate the infor-
mation at first. We then downsample the fog volume three
times and then upsample it with skip connection.

1.3. Fusion

As aforementioned in the main body, we compute the
variance of cost volume and fog volume and fuse the two
volumes via concatenation. We then use three 3D convolu-
tions to improve the fusion further.

2. Experiments
2.1. Visualization of Synthesized Foggy Images

We present the foggy images in Fig. 3 and Fig. 4 to vi-
sualize the synthesis results in different datasets. The foggy
images are synthesized according to the atmospheric scat-
tering process:
where T(Z,) = e #%=, J(x) = Loop(z) represents the
data in clear scene and I(x) represents the data in foggy
scene.
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Figure 4. The visualization of synthesized foggy images in the Scene Flow dataset.

2.2. Learning Stability

In order to show the learning stability of our method, we
present the loss distribution in the training process and the
testing loss at every 30 epochs. As shown in Fig. 5a, the
training loss of DeepPruner [1] is unstable and much higher
than that of other methods. Similar results are observed in
the testing loss in Fig. 5b. Compared to the 4Kdehazing [2]
+ DeepPruner [ 1], our method achieves a stable decrease of
loss in testing and is less overfitting, as shown in Fig. 5c.
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(a) The training loss distribution.
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(b) The testing of of each epoch.
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(c) The detailed testing of of each epoch.

Figure 5. The visualization of loss in training and testing pro-
cess on KITTI 2015. "OURS’ represents the distribution result of
our method. *SEQ’ represents 4Kdehazing [2] + DeepPruner [1].
‘STEREQ’ represents the distribution result of DeepPruner [1].
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