
Appendices to Contrastive Conditional Neural Processes

This contains three sections for describing experimental
datasets, additional experimental results and detailed model
implementation.

A. Dataset Description
The experiments in this work are three folds, including

1D time-series function, 2D predator-prey dynamics and
high-dimensional time-series datasets.

A.1. 1D time-series functions

We run few-shot regression on four function families,
see Tab. 1 for the specific definition of each. Each function
instantiation used in training/validation/testing is generated
with respect to the specified range therein. By following
conventional meta-learning setting, instantiations within a
batch are randomly sampled from the dataset of sinusoid
functions without replacement, i.e. fi ̸= fi′ , ∀fi ∈ fB ,
with fB = {fi}i=1:|B|.

We generate 500 samples for each function family with
splitting training/validation/testing in the 9 : 1 : 1 ratio,
without function overlap. For each instantiation, context
size is sampled from (0, N ] (N refers to N -shot) with extra
target size is drawn from (0, 10] in the training phase, whilst
in validation and testing phase the context size is fixed at
N and prediction is evaluated on the whole sequence. The
reported results are acquired on the test set. The dimension
of observation space is Y ⊆ R.

A.2. 1D GP-generated functions

In addition to the above four function families, we
also conduct 1D regression experiments where the data-
generating functions are Gaussian Processes with different

1D Synthetic Function

Family Form α β x

Sinusoid y = α sin(x− β) (−1, 1) (−0.5, 0.5) (−π, π)
Exponentials y = α× exp(x− β) (−1, 1) (−0.5, 0.5) (−1, 4)
Oscillators y = α sin(x− β) exp(−0.5t) (−1, 1) (−0.5, 0.5) (0, 5)
Straight lines y = αx+ β (−1, 1) (−0.5, 0.5) (0, 5)

Table 1. Details of 1D times-series functions. Columns of α, β, x
corresponds to the range where a function instantiation is ran-
domly sampled therein (e.g., f1 = −0.5 sin(x − 0.3) and f2 =
0.4 sin(x+ 0.1)).

kernels. We use the kernels as in AttnCNP and ConvCNP,
including RBF, Periodic and Noisy Matérn:

k(xi, xj)RBF = exp

(
−d(xi, xj)

2

2l2

)
k(xi, xj)PER = exp

(
−2 sin2 (πd (xi, xj) /p)

l2

)
k(xi, xj)MAT =

1

Γ(ν)2ν−1

(√
2ν

l
d (xi, xj)

)ν

Kν

(√
2ν

l
d (xi, xj)

)
+ ϵ

(1)

The number of instantiations we generate for each kernel is
4096, of which 256 are used for testing and 256 for vali-
dation, respectively. Other than that, we use the same sam-
pling strategy as time-series functions, and perform N -shot
regression.

A.3. 2D predator-prey dynamics

To model the 2D population dynamics, we fit the Lotka-
Volterra equations (LV) with CNPs. Given values of y1 and
y2 at initial time index x = 0, the poluations of both species
vary after each time increment based on interaction coeffi-
cients α, β, δ, γ. The growth rates are defined by

∇xy1 = αy1 − βy1y2

∇xy2 = δy1y2 − γy2
(2)

with respect to time increment x : 0 → xmax. Thus, in
each simulated trajectory, the populations at each time in-
dex are determined by the initial values of y1, y2, α, β, γ, δ.
We consider two modes of simulation. One is Greek mode
where α, β, γ, δ are set to fixed values with y1 and y2 are
randomly sampled from the given range, while in Popula-
tion mode y1 and y2 are assigned with fixed initial numbers
with α, β, γ, δ become random variables (Tab. 2). For both
modes, we run 200 trials as the meta-dataset with accumu-
lating 150 timesteps, i.e. xmax = 150 for every trial. We
generate 200 samples for each function family with split-
ting training/validation/testing in the 9 : 1 : 1 ratio, without
function overlap. For each trajectory, context size is sam-
pled from (0, 80] with extra target size is drawn from (0, 20]
in the training phase, whilst in validation and testing phase



2D Population Dynamics

Mode y1 y2 α β γ δ

Greek (0.5, 2.0) (0.5, 2.0) 4/3 2/3 1 1
Population 1.6 0.8 (0.9, 1.1) (0.05, 0.15) (1.25, 1.75) (0.5, 1.0)

Table 2. Details of 2D LV systems. y1 and y2 denote the initial
population of predator and prey, resepctively. α, β, δ, γ refer to
the interaciton coefficients. Either initial population or interaction
coefficients are set to fixed in a specific mode, while another group
is randomly initialized. All the values have been normalized to
avoid the impact caused by magnitude.

the context size is fixed at 80 and prediction is evaluated on
the whole trajectory. The reported results are acquired on
the test set. In this case, the dimension of observation space
is Y ⊆ R2.

A.4. Higher-dimensional time-series

We experiment with two higher-dimensional time-series
dataset, where observations are depicted as images, includ-
ing a BouncingBall dataset and a RotMNIST dataset. For
Bouncing Ball, each trajectory contains the movements of
three interacting balls within a rectangular box, with the
length of 20 steps, where each timestep is framed as a 32∗32
image. We randomly grab 10000 abd 500 trajectories for
training and testing, respectively. For RotMNIST, each tra-
jectory contains the rotation of a handwritten digit ”3” pre-
senting 16 angles (so as with the length of 16 steps), where
each timestep is frame as a 28∗28 image. Randomly drawn
400 sequences are used for experiment with a 9:1 ratio for
splitting training/testing set. During the training phase for
both datasets, the context size and extra target size are ran-
domly drawn in the range (0, 5] and (0, 5]. In this case, the
dimension of observation space are Y ⊆ R784 (RotMNIST)
and Y ⊆ R1024 (Bouncing Ball).

 Time Series

Bo
un

ci
ng

Ba
lls

Ro
at

io
n

M
N

IS
T

Figure 1. Examples of 5 consecutive steps of Bouncing Ball data
and RotMNIST data.

B. Additional Experimental Results
B.1. Few-shot Regression on GP-generated Func-

tion

We supplement the results for 5-shot and 20-shot re-
gression for GP-generated functions in three different ker-

1D 2D High-Dimension
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Re
la

tiv
e 

El
ap

se
d 

Ti
m

e

0.3 0.3
0.2

1 1 1

2.8
2.9

3.1
Running Efficiency of CNP, ACNP, CCNP

CNP
ACNP
CCNP

Figure 2. Comparison on Computational Efficiency

nels, with reconstruction error (MSE) used as the evalua-
tion metrics. It is noticeable that ConvCNP shows particu-
lar merits when predicting periodic data, while CCNP per-
forms better with noise contained (Noisy Matérn). Also, the
translation-equivariance assumption baked into ConvCNP
may not hold for every case.

5-shot regression 20-shot regression

RBF Periodic Matérn RBF Periodic Matérn

CNP 0.723 ± 0.008 0.588 ± 0.001 0.972 ± 0.005 0.456 ± 0.019 0.535 ± 0.001 0.923 ± 0.044
AttnCNP 0.587 ± 0.004 0.552 ± 0.007 0.908 ± 0.007 0.119 ± 0.003 0.497 ± 0.022 0.569 ± 0.283
ConvCNP 0.581 ± 0.004 0.278 ± 0.007 0.785 ± 0.013 0.102 ± 0.001 0.065 ± 0.128 0.468 ± 0.151

CCNP 0.509 ± 0.032 0.443 ± 0.138 0.635 ± 0.004 0.100 ± 0.015 0.183 ± 0.029 0.412 ± 0.002

Table 3. Additional 1D Few-Shot Regression with GP in three
kernels, running over 3 different seeds.

B.2. Running Efficiency

We have discussed that one of the limitations of CCNP is
running efficiency due to the negative sampling steps when
performing contrastive learning. We provide a comparison
of initial relative elapsed time between CNP, AttnCNP, and
CCNP running on the same epochs (see Fig. 2). CCNP pri-
marily emphasizes predictive efficacy, so its efficiency may
be sacrificed somewhat. Meanwhile, AttnCNP and CCNP
are more comparable since both involve calculating atten-
tion, while CCNP costs more time to train contrastive tar-
gets. It might be possible to optimize CCNP’s efficiency by
using ideas like MoCo.

B.3. Ablation studies for Projection Heads

As it is a commonsense that the projection head plays
a significant role in determining the performance of con-
trastive learning, we also examine the effects of setting dif-
ferent sizes for projection head through studies performed
within high-dimensional sequences.



Dim. RotMNIST BouncingBall
MSE (×10−2) MSE (×10−1)

8 0.751 ± 0.126 0.537 ± 0.002
16 0.687 ± 0.078 0.511 ± 0.001
32 0.654 ± 0.072 0.483 ± 0.008
64 0.648 ± 0.044 0.470 ± 0.005

128 0.646 ± 0.079 0.458 ± 0.004

Table 4. Ablation studies of Projection Head with pred size=10

C. Additional Implementation Details
We implement the model with PyTorch 1.8.0 on a Nvidia

GTX Titan XP GPU. See below for the details of CCNP’s
components.

C.1. CCNP for 1D

Input Encoder architecture for 1D. 1

(x,y) ∈ (R,R) → FCL(64) → ReLU

→ FCL(64) → ReLU

→ FCL(64) → ReLU

→ FCL(64) ⇒ rC/rT /rF

Position-Aware Self-Attention architecture for 1D.

MultiHeadAttention = {K,Q, V,A,H}
with K = FCL(64), key transformation

Q = FCL(64), query transformation

V = FCL(64), value transformation

A = DotProductAttention(K,Q, V )

H = FCL(64),head fusion

where

DotProductAttention = {K,Q, V }
with K = FCL(64), key transformation

Q = FCL(64), query transformation

V = FCL(64), value transformation

Temporal Contrastive Component for 1D.

(xt, rT ) ∈ (R,R64) → FCL(64) → ReLU

→ FCL(64) ⇒ φ(xt, rT )

φ(xt, rT ) → FCL(8) ⇒ ẑt

yt → FCL(8) ⇒ zt

(ẑt, zt) → InfoNCE

with τ = 0.5

1FCL(d) = Fully Connected Layer(output dimension)

Function Contrastive Component for 1D. Taking 2 in-
stantiations for illustration. We use instantiations within a
whole batch in practice.

xf1
C ,x

f2
C → xf1

C1
,xf1

C2
,xf2

C1
,xf2

C2

xf1
C1
,xf1

C2
,xf2

C1
,xf2

C2
→ rf1C1

, rf1C2
, rf2C1

, rf2C2

rf1C1
→ FCL(8) ⇒ qf1

i

rf1C2
→ FCL(8) ⇒ qf1

j

rf2C1
→ FCL(8) ⇒ qf2

i

rf2C2
→ FCL(8) ⇒ qf2

j

qf1
i ,q

f1
j ,q

f2
i ,q

f2
j → InfoNCE

with τ = 0.5

Output Decoder architecture for 1D.

(xt, rC , rT , rF ) ∈ (R,R64,R64,R64) → concat(·, ·, ·, ·)
→ FCL(64) → ReLU

→ FCL(64) → ReLU

→ FCL(64) → ReLU

→ FCL(64) → ReLU

⇒ rg

rg ∈ R64 → FCL(1) ⇒ µ̂t

rg ∈ R64 → FCL(1) ⇒ σ̂t

C.2. CCNP for 2D

Similar to 1D, except for y ∈ R2, thus in decoder

rg ∈ R64 → FCL(2) ⇒ µ̂t

rg ∈ R64 → FCL(2) ⇒ σ̂t

C.3. CCNP for High-dimensional data

We replace ψ(·) for encoding observations y with Con-
volutional Blocks 2, with BN3. For decoding we use ConvT4

Input Encoder architecture for RotMNIST.

y ∈ R784 → Conv(16, 5, 2, 2) → BN(16) → ReLU

→ Conv(32, 5, 2, 2) → BN(32) → ReLU

→ Conv(64, 5, 2, 2) → BN(64) → ReLU

→ Conv(128, 5, 2, 2) → BN(128) → ReLU

(x ∈ R, ψ(y)) → FCL(128) ⇒ rC/rT /rF

Output Decoder architecture for RotMNIST.

(xt, rC , rT , rF ) ∈ (R,R128,R128,R128) → concat(·, ·, ·, ·)
→ FCL(72) ⇒ rg

2Conv(f, k, s, p) = Convolution2D(feat maps, kernel, stride, pad)
3BN(d) = BatchNormalization2D(dim)
4ConvT(f, k, s, p) = ConvTranspose2D(feat map, kernel, stride, pad)



rg → reshape(batch size, 8, 28, 28)

→ ConvT(128, 3, 1, 0) → BN(128) → ReLU

→ ConvT(64, 5, 2, 0) → BN(64) → ReLU

→ ConvT(32, 5, 2, 1) → BN(32) → ReLU

→ ConvT(1, 5, 1, 2) ⇒ µ̂ ∈ R28×28

Input Encoder architecture for Bouncing Ball.

y ∈ R1024 → Conv(16, 5, 2, 2) → BN(16) → ReLU

→ Conv(32, 5, 2, 2) → BN(32) → ReLU

→ Conv(64, 5, 2, 2) → BN(64) → ReLU

→ Conv(128, 5, 2, 2) → BN(128) → ReLU

(x ∈ R, ψ(y)) → FCL(128) ⇒ rC/rT /rF

Output Decoder architecture for Bouncing Ball.

(xt, rC , rT , rF ) ∈ (R,R128,R128,R128) → concat(·, ·, ·, ·)
→ FCL(72) ⇒ rg

rg → reshape(batch size, 8, 32, 32)

→ ConvT(128, 3, 2, 1) → BN(128) → ReLU

→ ConvT(64, 5, 2, 1) → BN(64) → ReLU

→ ConvT(32, 5, 2, 1) → BN(32) → ReLU

→ ConvT(1, 5, 1, 2) ⇒ µ̂ ∈ R32×32

References


