Deformable Sprites for Unsupervised Video Decomposition

Supplementary Material

Parameterization of rigid transforms (Section 3.3). We
parameterize the homography as a decomposed chain of
transformations, as in [1]:
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where R € SO(2) and K is an upper triangular with
det K = 1. The parameters we optimize over are then
n= [SRll, sRq2,t1,t2, Kq1, Kq2, vy, V2] € R8. We find
this parameterization to be more stable, and to favor explain-
ing the motion with rigid scaling and translation rather than
perspective and skew effects.

B-spline details (Section 3.3, Equations 2 and 3). The 1D
B-spline basis functions of degree d, B)i(z) € [0, 1]¢* are
defined for over the unit interval [0, 1]. We use the degree
d = 2 vector basis function B4(2) € [0, 1]3:
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In 2D, the degree d = 2 basis functions B34(u,v) are matri-
ces in [0, 133 defined for u, v € [0, 1].

B3 (u,v) = By*(u) - By*(v) . 3)

For each interpolated query point, we blend the d + 1 =
3 neighboring knot values (in each dimension) using the
weights given by the respective basis functions.

Determining transform scales (Section 4). The transfor-
mations are optimized to be consistent with the optical flow
in the coordinate space of the input images, but the scale
factor s() between each layer’s sprite and the input images
is not well-determined. We determine the scale of each
layer with the predicted masks after 5 epochs of training.
For each frame ¢ and layer ¢, we compute the mean flow,
uy) € R? as in Equation 8, and the bounding box coordi-
nates, ai“,b@ € R?, of the points {x; Mt(z)(r) > 0.5}.
The displacement of layer ¢ at time ¢ is 6t(z) = 23:1 ug).
We estimate the total area covered by each layer from the
start frame as a bounding box with minimum coordinate (%)

and maximum coordinate 5t(£)
a® = minfa{? - 5{7}, B9 = maxfaf” — 6"} @)

We set the scale factor for layer £ to be s() = W We
also update the rigid translation of layer ¢ at time ¢ to be
s . (554) —a®) — 1. o and B are thus mapped to
(—1,-1) and (1, 1), respectively.

Scale invariance in transform loss (Section 4, Equation
10). We divide the transform loss by the scale of the trans-
form in Equation 10 to prevent the transforms from becom-
ing degenerate (scaled to 0). Our loss results in transforms
with more stable scales. Given the homography parameteri-
zation of n= [5R117 sRq9,t1,t2, Kq1, Kq2, vy, Vg] S RS,

we use s = /1?7 + 13 as the scale.

Rejection of poorly-estimated fundamental matrices
(Section 4). We use the optical flow vectors of all pixels
in the input frame to estimate the fundamental matrix re-
quired for L. Because least median of squares regression
can handle outliers consisting up to 50% of the data, the
estimated fundamental matrix captures the static geometry
in the cases when background pixels comprise at least half of
the frame. However, we will encounter outlier percentages
greater than 50% when they do not.

To distinguish the two cases, we observe a difference
in the distribution of residuals in the two cases. Fitting a
fundamental matrix to a moving object in its local reference
frame will result in a fairly even residual distribution: we ob-
serve a modest residual on all points. In comparison, fitting
a fundamental matrix to a static element with moving out-
liers will result in a bimodal residual distribution: the static
points have low residuals, while outlier moving points have
high residuals. We implement this distinction by rejecting
estimates with a median error greater than 1 pixel.

Computing occlusions for optical flow consistency (Sec-
tion 4). We enforce optical flow consistency, using the losses
in equations 10 and 11, for all pixels that are not occluded.
We compute occlusion using the method described in [4].
We consider all points = in I;. Under the forward flow field
Fit+1, zistakento 2’ = Fy_,¢11(x). Under the backward
flow field Fyyq1-yt, ' is taken to "/ = Fiyi,:(2’). We
consider all points z such that

" —z[|* > 0.01+ (Fi41(2)* + Fry1-e(2')?) +1.5 (5)

to be occluded, and the corresponding points z’’ to be the
occluders. We call w(l;) the set of such occluded points x
in I;; we call Q(I;) the set of such occluded points =" in I;.

Network architectures. We implement our model in Py-
Torch [2]. We use a standard UNet architecture [3] for both
the grouping model and the texture generator. We provide
the architecture we used for the results reported in the paper
in Tables 1 and 2. All convolutions are 3 x 3 with a stride
and padding of 1. All layers use a ReLU activation function.
All upsampling and pooling layers use a scale factor of 2.



Optimization. We optimize our losses with a schedule. Ini-
tially the relative weight of the grouping loss is greater than
those of the transform and recon losses. After 5 epochs, we
reduce the grouping loss weight to 0.1 of the original weight.
We use Arecon = 1, Agroup = 1, Awransform = 1. We use the
Adam optimizer with learning rate 1073, We train each
video with batch size 8 on an NVIDIA RTX 2080, for videos
resized to 240 x 426 spatial resolution, for a total of 200
epochs. For a video with 80 frames of this size, optimization
takes around 30 minutes.

layer in channels | out channels
1 | conv, BN, avg pool 16 32
2 | conv, BN, avg pool 32 64
3 | conv, BN, avg pool 64 64
4 conv, BN, UP 64 64
5 | skip3, conv, BN, UP 128 32
6 | skip2, conv, BN, UP 64 16

Table 1. Network architecture for the grouping network. BN is
batch norm, UP is bilinear upsample.

layer in channels | out channels
1 | conv, BN, avg pool 16 32
2 | conv, BN, avg pool 32 64
3 | conv, BN, avg pool 64 128
4 | conv, BN, avg pool 128 128
5 conv, BN, UP 128 128
6 skip4, BN, UP 256 64
7 | skip3, conv, BN, UP 128 32
8 | skip2, conv, BN, UP 64 16

Table 2. Network architecture for the texture generator. BN is batch
norm, UP is bilinear upsample.
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