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Abstract

There are four parts in this supplementary:

• The details to reproduce Fig. 1 (bottom left) in the main
paper and the details of our proposed criterion.

• A probabilistic view of DISCOVERNET which decom-
poses the ambiguous distance between objects.

• Detailed configurations of the experiments and imple-
mentation details.

• Additional experimental results to show the superiority
of the proposed DISCOVERNET.

1. Details of Our Proposed Criterion
1.1. Supervised CSL

A supervised CSL model learns multiple embedding
ΨK , revealing the specific characteristics of each similar-
ity condition.

Given ΨK , we can determine the validness of a triplet.
Specifically, given a (supervised) triplet τ = (x,y, z, k)
from the k-th condition, we use the corresponding embed-
ding ψk and compute the value

Diffk
τ = Dis2Lk

(ϕ(x), ϕ(z))−Dis2Lk
(ϕ(x), ϕ(y))

= ∥ψk(x)− ψk(z)∥22 − ∥ψk(x)− ψk(y)∥22 . (1)

We use Diffk
τ to predict whether a triplet is valid or not. if

x (the anchor) and y (the target neighbor) are more similar
than x (the anchor) and z (the impostor), i.e., the distance
between x and y based on ψk is smaller than the distance
between x and z, then we have Diffk

τ > 0.
Evaluation Criterion of Supervised CSL. To evaluate a
supervised CSL model, we transform the task into measur-
ing the prediction ability of multiple embeddings, i.e., we
use the learned ΨK to determine whether a given triplet
is valid or not. In detail, we sample the same number of

valid triplets from each condition during evaluation. Then
for each condition k, we use ψk to predict whether triplets
from that condition are correct or not based on the value
of Diffk

τ . The average accuracy (proportion of triplets pre-
dicted as correct) over them is used as the final criterion,
which reveals the quality of multiple CSL embeddings.

Denote Map[k] as a mapping from ground-truth condi-
tion k to a particular learned embedding ψMap[k] in ΨK . In
the supervised scenario, we learn the same number of con-
ditional embeddings with the number of ground-truth con-
ditions, and we set Map[k] = k as an identity mapping.
The evaluation steps are listed in Algorithm 1.

It is notable that given a particular ψk, we have either
Diffk

τ > 0 or Diffk
τ ≤ 0, so one triplet τ1 = (x,y, z, k)

and its reversed version τ2 = (x, z,y, k) could not exist
simultaneously under the same condition. Therefore, only
using the valid triplets during evaluation (all of them with
the “correct” label) produces reasonable results.

Algorithm 1 Evaluation of Supervised CSL

Require: Triplets {τi}Ti=1, the learned embeddings ΨK ,
the condition-embedding mapping Map[k]

1: Initialize: t = 0.
2: for i = 1 → T do
3: get τi = (x,y, z, k) with ground-truth condition k
4: compute Diffk

τi with ψMap[k] and Eq. 1
5: if Diffk

τi > 0 then
6: t = t+ 1
7: end if
8: end for
9: return Acc = t/T

Discussions of the Supervised CSL Criterion. One di-
rect question of the criterion is whether it could reveal all
conditional similarities or not. Due to the fact that a triplet
τ1 and its reversed version τ2 could not be satisfied by the
same conditional embedding ψk, the evaluation of those
valid triplets excludes the relationship revealed by the re-
versed triplets and characterize a particular similarity con-



dition. The learned conditional embeddings could achieve
high accuracy only when they characterize the latent rela-
tionship of all target conditions.

1.2. Weakly Supervised CSL

The current WS-CSL evaluation utilizes the same crite-
rion as the supervised CSL [6,10] — predicting the correct-
ness of a triplet without using the test-time condition labels.
We first demonstrate the drawback of the current criterion
via a synthetic experiment.
Synthetic Experiment Setups. We investigate various
methods on UT-Zappos-50k dataset [14, 15], where we ex-
tract 40,000 triplets from four conditions. We use con-
ditional labels for supervised methods, and neglect them
for WS-CSL methods during evaluation. There are various
methods in our synthetic experiment.

• Optimal. We show the optimal Supervised CSL
method as a reference. Which achieves the highest per-
formance with the supervised evaluation criterion.

• CSN [12]. CSN learns multiple embedding masks dur-
ing training in a fully supervised way, and applies the
corresponding mask over the backbone as a special
conditional measure. Note that the condition labels are
required in both training and test processes.

• LSN [6]. LSN is a multi-attribute model which dis-
covers latent attributes by choosing the one with the
minimum loss in a Weakly Supervised way. Follow-
ing the multi-choice learning [2], it learns disentangled
embeddings ΨK with hard condition assignments.

• SCE-Net [10]. SCE-Net is a Weakly Supervised
method, which consists of an attention module and
multiple embeddings ΨK . Given a triplet, SCE-Net
generates a weight vector over multiple conditions,
with which it fuses multiple embeddings ΨK to pre-
dict the correctness of a triplet.

• DISCOVERNET. Our proposed Weakly Supervised
CSL method with semantic regularization. Details can
be found in the main paper.

We introduce another task to predict the correctness of
reversed triplets, i.e., we transform τ1 = (x,y, z, k) to
τ2 = (x, z,y, k) by exchanging the position of last two in-
stances in the triplets. So in a supervised evaluation, the
ground-truth of all reversed triplets must be false, and a
supervised method should predict them as correct ones as
fewer as possible (the lower the proportions of triplets be
predicted as valid, the higher the accuracy). However, in a
WS-CSL evaluation, we do not use the condition label k,
so a method predicts the correctness of τ3 = (x,y, z) and
τ4 = (x, z,y) in the original and reversed cases directly.

Supervised

Figure 1. Given original (correct) triplets and their reversed vari-
ants on UT-Zappos-50k, we compute the proportion a model that
predicts them as valid ones. The higher the proportion of original
triplets be predicted as correct ones, the higher the accuracy. In
contrast, the higher the proportion of reversed triplets be predicted
as correct ones, the lower the accuracy. The first two are super-
vised CSL methods, and the last three are WS-CSL methods.

Analysis of the Experiment. The results are shown in
Fig. 1. We show the proportion of original and reversed
triplets with red and blue respectively, and accumulate their
values together. For the optimal supervised model at the
leftmost, it predicts all original triplets as right ones and
all reversed triplets as invalid (achieves 100% accuracy in
both cases). For the supervised CSN, it has high proportion
(accuracy) on the original triplets and low proportion (also
high accuracy) on the reversed ones.

The phenomenon is different for WS-CSL methods, es-
pecially for SCE-Net. SCE-Net fuses all embeddings with
attention for each triplet. The results show SCE-Net gets
much higher accuracy on the original triplets (even better
than the supervised CSN), but also predicts a lot of reversed
triplets as correct ones. Fig. 1 indicates that SCE-Net tends
to treat most original and reversed triplets as right ones,
which is different from the supervised case.

The main reason is that the original and reversed triplets
could possess different conditions, so a WS-CSL method
explains them from two diverse aspects. Using the super-
vised criterion (i.e., the red part) could be biased in this
case. For example, SCE-Net is able to learn good em-
beddings and powerful attentions, but the current criterion
demonstrates that it prefers valid triplets, which is explained
by combined embeddings. Thus, we are unaware of whether
we learn meaningful embeddings or a strong fusion module.
Our Proposed WS-CSL Criterion. Based on our analysis,
the supervised criterion is able to evaluate the quality of
all learned embeddings, while the WS-CSL’s criterion may
fall into the scenario using all conditional embeddings to
explain the triplets. We follow an intuitive way to measure



a WS-CSL model — whether the learned WS-CSL model
performs similarly to the supervised CSL model. Then, not
only the fusion of conditional embeddings ΨK should cover
all target semantics, but also the behavior of each ψk reveals
the relationship w.r.t. a specific condition.

We propose a new evaluation criterion (details could be
found in the main paper). Using the conditional labels dur-
ing evaluation, we find an alignment Map[k] between a
particular condition and one of the learned embeddings in
ΨK . The condition labels are only utilized to choose a good
alignment. Then we can use the supervised criterion for a
better evaluation. The details to evaluate with our criterion
are listed in Algorithm 2.

Algorithm 2 Our evaluation steps for WL-CSL methods

Require: Learned embeddings ΨK , the number of ground-
truth condition K ′, the number of triplets of different
ground-truth conditions {Nk′}K′

k′=1.
1: I. Compute condition-embedding cost C.
2: for k′ = 1 → K ′ do
3: for k = 1 → K do
4: Initialize: t = 0.
5: get τi = (x,y, z, k′)
6: compute Diffk

τi with ψk and Eq. 1
7: if Diffk

τi > 0 then
8: t = t+ 1
9: end if

10: Acck′k = t/Nk′

11: end for
12: end for
13: Ck′k = 1−Acck′k

14: II. Match a condition k′ with embedding ψk.
15: i. Greedy Alignment:
16: for k′ = 1 → K ′ do
17: Map[k′] = argmin

k
Ck′k

18: end for
19: ii. OT Alignment:
20: compute transportation matrix T via
21: minT≥0⟨T,C⟩ s.t. T1 = 1

K
1, T⊤1 = 1

K
1

22: for k′ = 1 → K ′ do
23: Map[k′] = argmax

k
Tk′k

24: end for
25: III. Compute accuracy with Alg. 1 and Map[k].

Discussions. A natural question for obtaining the condi-
tional alignment is why we use OT instead of the Hungarian
method. OT is a more general method to solve a matching
problem. OT can deal with the case when there exists a
number mismatch between the conditional embeddings and
ground-truth conditions. We can show that when we use
uniform marginal distributions and a square cost matrix in
OT, the transportation will degenerate to the same solution

as Hungarian’s output with special conditions [7].

2. Probabilistic View of DISCOVERNET

In Weakly Supervised Conditional Similarity Learning
(WS-CSL), only triplets {τ = (x, y, z)} from multiple
conditions are provided, and the condition label k in each
triplet is unknown. This is the usual case that we can ex-
plicitly describe the similarity of two images but difficult
to point out from which aspect we measure them clearly.
The model needs to infer the right condition label and learn
discriminative embeddings to capture objects’ characteris-
tics simultaneously. Here we provide a detailed description
of the probabilistic view of the basic version of DISCOV-
ERNET. The final DISCOVERNET is equipped with a set
module or a semantic regularizer.

DISCOVERNET characterizes both the instance-instance
and triplets-condition relations in a “decompose-and-fuse”
manner, which could be interpreted in a probabilistic aspect.
With a bit abuse of the notation, we use τ = 1 to represent
the comparison relationship in the triplet is true, and τ = 0
otherwise. With the help of the latent variable cτ , we can
measure the validness of a triplet τ via a holistic considera-
tion of all similarity conditions:

Pr(τ = 1) =

K∏
k=1

Pr(τ = 1|ckτ = 1)c
k
τ . (2)

cτ ∈ {0, 1}K is a multinomial random variable, and we
use ckτ = 1 to denote the k-th component is selected.
σ(x) = 1

1+exp(−x) is the sigmoid function, which squashes
a variable into the range [0,1]. In Eq. 2, whether the rela-
tionship in the triplet is true or not depends both on the acti-
vated latent condition ckτ and the probability of the triplet
in that view Pr(τ = 1|ckτ = 1). Thus, the probability
is related to both the concept prior ckτ = 1 (the “triplets-
condition” relationship) and the validness of the triplet con-
ditioned on a particular concept Pr(τ = 1|ckτ = 1) (the
“instance-instance” relationship). The influence of all sim-
ilarity conditions is aggregated together to determine the
triplet in expectation.

Based on the projectionLk, we can define the probability
that a given triplet is true based on their distance difference
in the specific instance-instance embedding space

Pr(τ = 1|ckτ = 1) = σ
(
Diffk

τ − γ
)
. (3)

where the distance difference Diffk
τ is defined in Eq. 1. If

the distance between x and y in this embedding space based
on ϕ is smaller than the distance between x and z, the input
to σ is large such that the triplet will have a large probability
to be valid. γ > 0 is a threshold. By subtracting γ from
Diffk

τ , we require the distance with the impostor should not



Table 1. The detailed configurations of conditions in our synthesized Celeb-A†. We synthesize 5 attributes over Celeb-A via combining
similar binary attributes together, so each condition has 5-7 possible values.

Combined attributes # of values Original attributes included

Hair color 5 black-hair,blond-hair,brown-hair,gray-hair

Hair type 7 bangs,receding-hairline,straight-hair,wavy-hair

Eye and eyebone 6 arched-eyebrows,bags-under-eyes,bushy-eyebrows,narrow-eyes

Accessories 6 wearing-earrings,wearing-hat,wearing-necklace,wearing-necktie

Nose and mouth 7 big-lips,big-nose,mouth-slightly-open,pointy-nose

only be large but also larger than the distance with the target
neighbor plus a margin.

For all given triplets T , we optimize the embedding by
maximizing the log-likelihood:

O =
∑
τ∈T

log Pr(τ = 1) , (4)

which has a similar form of the large margin loss [8,9] when
only the general projection L and ϕ is used. The overall
objective which minimizes the negative log likelihood of
the joint probability over all triplets is:

O = −
∑
τ∈T

log

K∏
k=1

σ(Diffk
τ − γ)c

k
τ (5)

= −
∑
τ∈T

K∑
k=1

ckτ log σ(Diffk
τ − γ)

= −
∑
τ∈T

Ecτ log σ(Diffk
τ − γ)

=
∑
τ∈T

Ecτ ℓ(Diffk
τ − γ)

≈
∑
τ∈T

ℓ
(
Ecτ

[
Diffk

τ

]
− γ

)
.

Here ℓ(x) = log(1+exp(−x)) is the logistic loss function,
which can be replaced by other general losses. The approx-
imation transforms the expectation over the loss function to
the expected distance over the conditions, which fuses and
reveals the preference over multiple similarity conditions.
Therefore, the optimization in Eq. 5 requires the relation-
ship in the selected instance-wise metric space to reveal the
corresponding similarity condition, which makes the dis-
tance between the anchor and the impostor larger than the
distance between the anchor and the target neighbor.

3. Experimental Setups
We describe the dataset, the comparison methods, and

the implementation details in this section.

3.1. Datasets

Celeb-A† is a more complicated version of Celeb-A [5]
via combining similar binary attributes in Celeb-A together.
In particular, there are 202,599 face images from different
identities in Celeb-A, and 40 binary visual attributes for
each image, e.g., “Eyeglasses” or “Wearing Hat”. Each at-
tribute corresponds to a condition, and we sample triplets
randomly based on the binary values for each condition. To
increase the difficulty of the dataset, we combine related bi-
nary attributes in Celeb-A together. The attributes related
to “Hair color”, “Hair type”, “Eye and eye-bone”, “Acces-
sories”, “Nose and mouth” are merged, and each of them
has 5-7 possible discrete values. Details can be found in
Table 1. Thus, different from the vanilla version with 40 bi-
nary attributes, the smaller number of attributes in the syn-
thesized new dataset Celeb-A† has multi-choice conditions.
We apply the same model configurations (such as the learn-
ing rate and the architecture) for Celeb-A† as Celeb-A.

3.2. Implementation Details

Following [6, 10, 12], we use ResNet-18 [3] to imple-
ment the embedding backbone ϕ. Different from the previ-
ous literature fine-tuning the backbone based on the weights
pre-trained on ImageNet [1], we also consider the case that
we train the full model from scratch. We find although the
pre-trained weights make the model predict triplet well, it
losses the coverage of semantics among conditions. The
last downsampling layer in the backbone is removed to ac-
commodate the smaller image size, and an additional fully
connected layer is appended to project the embeddings to
specified dimensions. We set the embedding dimension 64
and the temperature ς in Eq. 10 in the main paper as 1.0 for
both UT-Zappos-50k and Celeb-A. We use the Adam op-
timizer [4] in our experiments and train our model for 90
epochs totally. The initial learning rate is 0.01 and annealed
to 10% every 30 epochs. When the model is fine-tuned from
the pre-trained weights, we set the initial learning rate as 5e-
4, and the learning rate of the last layer is 10 times faster. In
the case of training a model from scratch, the initial learning



Table 2. Greedy accuracy and OT accuracy on 8-condition Celeb-
A (binary conditions) and its attribute merged variant Celeb-A†

with five multi-choice conditions, respectively. All methods are
fine-tuned with pre-trained weights. We make the best WS-CSL
results in bold.

Celeb-A Celeb-A†

Criteria → GR Acc. OT Acc. GR Acc. OT Acc.

CSN [12] 84.88 84.88 73.04 73.04
LSN [6] 72.89 71.95 63.73 63.67

SCE-Net [10] 69.91 68.73 60.26 59.73

DISCOVERNETSet 80.65 78.81 64.23 63.49
DISCOVERNETReg 79.31 78.79 65.32 64.71

Table 3. Influence of the number of training triplets for
DISCOVERNETSet and DISCOVERNETReg on Celeb-A. Models
are fine-tuned with pre-trained weights.

DISCOVERNETSet DISCOVERNETReg

# Number GR Acc. OT Acc. GR Acc. OT Acc.

1× 105 79.08 78.07 78.18 75.66
2× 105 79.83 77.55 78.28 76.14
4× 105 80.65 78.81 79.31 78.79

rate is 0.01. Other configurations are the same as the sce-
nario optimized over the pre-trained weights. Margin loss is
used to optimize the embedding, and each mini-batch con-
tains 64 triplets.

4. Additional Experiments
In this section, we further investigate our proposed DIS-

COVERNET, including additional benchmark evaluations,
some ablation studies, and several visualizations omitted in
the main paper.

4.1. Additional Benchmark Evaluations

Celeb-A. The results of all methods over Celeb-A variants
are listed in Table 2. We observe that DISCOVERNET vari-
ants get the best accuracy with greedy or OT alignments
among other WS-CSL methods.

4.2. Ablation Studies

Another choice of the set module. In DISCOVERNETSet,
we use the maximum operator to make the output of the pair
sets in a triplet become permutation invariant [16]. Inspired
by [13], we can also investigate the mapping function g with
Transformer [11]. The multi-head self-attention mechanism
keeps the set property of the mapping but improves the
learning ability. After replacing g with the Transformer, we

Table 4. Performance comparison between DISCOVERNETTra

(the Transformer [11] implementation of g) and
DISCOVERNETSet on UT-Zappos-50k. We investigate two
cases that training the model from scratch and fine-tune the model
with pre-trained weights. Both GR accuracy and OT accuracy are
measured.

Setups → w/ pretrain w/o pretrain

Criteria → GR Acc. OT Acc. GR Acc. OT Acc.

DISCOVERNETSet 76.98 75.68 74.67 74.13
DISCOVERNETReg 77.84 77.68 72.99 71.46

DISCOVERNETTra 77.54 77.30 75.72 75.46

Table 5. Influence of the balance weight λ over the training regu-
larizer for DISCOVERNETReg on Celeb-A. Models are fine-tuned
with pre-trained weights.

λ 0 0.0001 0.001 0.01 0.1

GR Acc. 73.81 77.51 77.70 75.19 50.87
OT Acc. 69.52 76.19 77.09 74.07 50.46

name the variants of set module as DISCOVERNETTra. We
compare the performance of DISCOVERNET variants on the
Zappos dataset. As shown in Table 4, DISCOVERNETTra

outperforms DISCOVERNETSet by a large margin if the
model is optimized without the pre-trained weights.
Influence of training triplets. We show the influence of
the triplets number in Table 3, where we vary the number
of triplets during the training progress of DISCOVERNET.
More training triplets make it easier for a model to infer the
latent conditions of triplets and shape the various spaces. As
shown in Table 3, when there are more training triplets, both
the GR accuracy and OT accuracy increase. The results also
indicate that DISCOVERNET is able to learn discriminative
conditional embeddings and identify the latent conditions
given a relatively small number of training triplets.
Influence of the balance weight λ of semantic reg-
ularization. Table 5 shows the influence of λ in
DISCOVERNETReg. We find that DISCOVERNETReg can
get higher accuracy when λ increases around 0.001, which
indicates the regularization indeed helps.

Visualization of semantic embeddings. To better il-
lustrate the ability that DISCOVERNET learns meaning-
ful semantics given the triplets, we show the TSNE vi-
sualizations for each of the learned semantic spaces by
DISCOVERNETReg on Celeb-A in Fig. 2 and Fig. 3. Ob-
viously, DISCOVERNET captures the variety of conditions
and learns different embeddings for the dataset with good
interpretability. Typically, in Fig. 2 (d), on the “eyeglasses”



(a) 5-o-Clock-Shadow (b) Attractive

(c) Bags-Under-Eyes (d) Eyeglasses

Figure 2. TSNE of the learned embeddings for each of the four conditions (i.e., 5-o-Clock-Shadow, attractive, bags-under-eyes and
eyeglasses) on Celeb-A dataset based on DISCOVERNETReg.

condition, DISCOVERNET gathers all faces with eyeglasses
in the center-left part of the image. Similarly, in Fig. 3
(b), on the “smiling” condition, DISCOVERNET gathers all
faces without smile in the upper-left part of the image. Note
that DISCOVERNET learns the semantic metric spaces with-
out any condition labels.

Visualization of conditional image retrieval. To gain
insights into the conditions learned by our model
(DISCOVERNETReg), we provide image-retrieval visualiza-
tions for four conditions on UT-Zappos-50k in Fig. 4 and
Fig. 5. Generally speaking, DISCOVERNET can learn the
distance between images based on a certain semantic. For
example, on the “suggested gender” condition in Fig. 5 (a),



our model can make all images related to Male (resp. Fe-
male) closer to the anchor related to Male (resp. Female)
while pushing images related to Female (resp. Male) away.
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(a) Male (b) Smiling

(c) Wearing-Lipstick (d) Young

Figure 3. TSNE of the learned embeddings for each of the four conditions (i.e., male, smiling, wearing-lipstick, and young) on Celeb-A
dataset based on DISCOVERNETReg.



(a) Functional Types

(b) Closing Mechanism

Figure 4. Visualization of the image retrieval results for each of the two conditions (i.e., functional types and closing mechanism) on
UT-Zappos-50k dataset with the learned embedding of DISCOVERNETReg. The first image in each row is the query item, and shoes are
ranked by distances to the query item in ascending order.



(a) Suggested Gender

(b) Height of Heels

Figure 5. Visualization of the image retrieval results for each of the two conditions (i.e., suggested gender and height of heels) on UT-
Zappos-50k dataset with the learned embedding of DISCOVERNETReg. The first image in each row is the query item, and shoes are ranked
by distances to the query item in ascending order.


