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B. Proofs
Proposition 1. For any non-negative probability functions p and q of two environments, diversity shift Daiy(p,q) and
correlation shift Deo:(p, q) are always bounded between 0 and 1, inclusively.

Proof. Apparently, Dy, (p, q) and Do (p, ) are always non-negative, so we are left to prove the upper bound. By the triangle
inequality and that every probability function sums up to one over all possible outcomes, we have
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Similarly, we also have
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Lemma 1. Suppose there are equal amount of examples from two environments, then for any example x € X sampled from
either of the environments, the probability a(x) of a prediction t(x) € {0, 1} that predicts the sampling environment of x

being correct is
(1 —t(x)) - p(x) + t(x) - ¢(x)
p(x) +q(x) '

Proof. First of all, we need to define several quantities. Let the probability of an example being sampled from the first
environment be P(E = 0) and the probability of an example being sampled from the second environment be P(E = 1).
Since there are equal amount of examples from both environment, we have P(E = 0) = P(E = 1) = 1. The probability of
an example (from one of the environments) taking on a particular value x is P(X = x| E =0)and P(X =x|E =1). By
definition, P(X = x| E = 0) = p(x) and P(X = x| EF = 1) = ¢(x). The probability of an example taking on a particular
value x (regardless of the environment) is given by

PX=x)=PX=x,EF=0+P(X=x,FE=1)
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The probability of a given example x being sampled from the first environment is
P(X=x|E=0)-P(E=0) p(x) p(x)
PE=0|X=x)= = = . 9
( | X =x) P(X =x) 2P(X =x)  p(x) + q(x) ©
Similarly, the probability of x being sampled from the second environment is
q(x)
PE=1|X=%x)= ——"——. (10)
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Together, the overall probability of some prediction ¢(x) being correct is
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Theorem 1. The classification accuracy of a network trained to discriminate two different environments is bounded above
by & [, max{p(x), q(x)}, as the data size tends to infinity. This optimal. performance is attained only when the following
condition holds: for every x € X that is not i.i.d. in the two environments, i.e. p(x) # q(x), there exists some y € Y such that

ply,2z) # 4(y,z) where z = g(x).
Proof. To formally state that the network attains optimal performance in classifying the environments, we note that for any
example x € X, the probability a(x) of a prediction ¢(x) € {0, 1} being correct is

(1 —t(x)) - p(x) +t(x) - ¢(x)

() + 1) (12

This has been shown by Lemma 1. Hence, the overall classification accuracy is given by
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The best possible classification accuracy that can be attained by the network is determined by the environments alone, which is

5 [ (=60 00+ 100) - )} = 5 | max{p(x). ) (14)

The above maximum is attained by ¢* satisfying the following equations for every x such that p(x) # ¢(x):

wioy )0 ifp(x) > q(x)
t(x) = {1 if p(x) < q(x) (15)

In other words, ¢t* predicts the environment from which an example is more likely sampled. Suppose for some x such that
p(x) > g(x) we have (i) g(x) = z and (ii) p(y,z) = §(y, z) for every y € ), then there must exist some x’ # x such that
p(x") < q(x') with f(x') = f(x) and g(x") = g(x). It follows that ¢(x) = ¢(x’) because x and x’ both map to the same y
and z, which makes no difference to h. Finally, it is clear to see that t # ¢t* and therefore the network does not attain the
optimal performance. O

C. Practical Estimation of Diversity and Correlation Shift

In this section, we provide complete pseudo codes of our estimation methods for diversity and correlation shift, supported
by more theoretical justifications.

C.1. Pseudo codes and supporting theoretical justifications

Algorithm 1 Training procedure of feature extractor and environment classifier

Require: Training environment &, and test environments &; mini-batch size N; number of training steps 7'; loss function /.
Ensure: Feature extractor g : X — F; environment classifier h : F x Y — [0, 1].
1: Initialize network parameters;
2: for each training step ¢t <— 1,...,7 do
3: sample a mini-batch of training examples {(x;, 4, €;) } 71 from & (indexed by e; = 0) and & (indexed by e¢; = 1) while ensuring
equal sampling probability for the two environments and for every distinct value y € ) in each environment;
for each example (x;, y;, ¢;) in the mini-batch do
éi + h(g(xi),y:);
compute loss £(é;, e;) and back-propagate gradients;

Nk

update network parameters by the accumulated gradients, and then reset the gradients.

The training procedure of our feature extractor g and environment classifier i is described in Algorithm 1. Note that in line
3, we use sample reweighting to ensure the class balance in every environment so that the following assumption holds.

Assumption 1. Foreveryy € ), p(y) = q(y) > 0, i.e., there is no label shift.



Each environment defines a distribution over X'. The two environments share the same labeling rule f : X — ). The
feature extractor g : X — F maps every input x € X to an d-dimensional feature vector z € F. Put it together, the labeling
rule f, the feature extractor g together with the two distributions over X" induces two probability functions p and ¢ over
X xYxF.

As mentioned in the paper, for a practical estimation of diversity and correlation shift, we first partition F into

§i={zeF|p@)-iz) =0} and T ={zeF|p(z)-i(z)# 0}, (16)

and then estimate the shifts by

Di(6.0) = 5 [ 19(a) — i(2) . (7)
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where we have simply replaced (p, ¢) with their empirical estimates (p, §) and replaced (S, 7") with (S, T’) in Definition 1.
One might notice a slight difference between the definition of (S,7) and the definition of (8’,7"), which is that (S, T)
are subsets of Z5, and therefore only contain non-causal features, whereas (S’, 7”) are subsets of F, which could contain
representations of both Z; and Z5. Fortunately, this is not an issue for two reasons. First, the features in S’ have no shared
support in the two environments, i.e. p(z) - G(z) = 0. Recall that

p(z)-q(z) Z0 ANVy eV :p(yl|z) =q(y|z) 19)

holds for every z € Z;. This suggests that we would have p(z) - §(z) # 0 for every representation z of Z, and therefore the
integral over S’ would exclude these features. Second, (19) also suggests that the term | p(y | z) — ¢(y | z)| would be relatively
small for every y € ) and representation z of Z1, so the integral over 7" will not be affected by representations of Z;.

Once g is trained properly, inputs from training and test environments are all processed by g. Then the output features F
are gathered into Fy; and Fi., which are used for estimating the shifts as in Algorithm 2 below.

Algorithm 2 Estimation of diversity and correlation shift

Require: Features Fi and F. from training and test environments; importance sampling size M ; thresholds €giy and €cor.
Ensure: Estimated diversity shift D}, ; estimated correlation shift D7,.
1: # Prepare for the estimation
c F+— Fe U f'le;
. scale F to zero mean and unit variance;
: W < fit by KDE the distribution of F;
: Fi, Fre < split F to recover the original partition;
: P, § < fit by KDE the distributions of F, and Fi.;
# Estimate diversity shift
: D}, + 0;
cfort < 1,...,M do
z <+ sample from w;
if p(z) < eqiv or §(z) < €qgiv then
D, + Di, + |p(z) — i(2)| / i(a);
: Djy = Day [ 2M;
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. # Estimate correlation shift
: Dl + 0;
: foreachy € Y do
Py, Gy < fit by KDE the distributions of the subsets of F, and JF, that correspond to the inputs with label y;
fort < 1,...,M do
z < sample from w;
if p(z) > ecor and G(z) > €cor then

Déor <= Dior + | Py (2)V/0(2)/P(2) — Gy (2)V/D(2)/4(2)] / (2);

: Dénr — Déor/2M|y‘
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C.2. Implementation details

Same as the networks on which the algorithms in Section 3.1 are trained, we use MLP for Colored MNIST and ResNet-18
for other datasets as the feature extractors. All ResNet-18 models are pretrained on ImageNet. The feature extractors are
optimized by Adam with a fixed learning rate 0.0003 for 7' = 2000 iterations. The batch size N we used is 32 for each
environment, and we set the feature dimension m = 8. For every random data split, we keep 90% data for training and use the
rest 10% data for validation. We choose the models maximizing the accuracy (in predicting the environments) on validation
sets. For datasets with multiple training environments and test environments, the network is trained to discriminate all the
environments. The loss function £ is the cross-entropy loss in our experiments. As for Algorithm 2, the importance sampling
size M = 10000, and we empirically set the thresholds egy = 1 x 10712 and €.y = 5 x 10~%. We use Gaussian kernels for
all the KDE:s.

D. Discussion on the Convergence of the Hidden Feature

In this section, we investigate the convergence of the features extracted by the neural network. We base our analysis on the

neural tangent kernel (NTK) [39, 102]. We focus on the dynamic of the output of the feature extractor instead of the output of
the entire neural network. For simplicity, consider a fully-connected neural network with layers numbered from O (input) to L
(output), each containing ng, - - - ,ny—1, and ny, = 1 neurons. The network uses a Lipschitz, twice-differentiable nonlinearity

function o : R — R with bounded second derivative. We define the network function by f(z;6) := h(%)(z;6), where the
function A(¥) : R™ — R™ and function g() : R™ — R™ are defined from the 0-th layer to the L-th layer recursively by

9(0) (7;0) :=

1
RED (12 9) = ¢ (z:0),
(2;6) \/WW 9" (z;0)

99(:0) = o (h(z;0)).

We refer to the output of the (I, — 1)-th layer as the extracted feature, i.e. h(*~) (2 0).> Given a training dataset { (x;, y;)}7_, C
R™ x R, consider training the neural network by minimizing the loss function over training data by gradient descent:

Z?:l loss(f(xi;0),y:).

Theorem 2. Assume that the non-linear activation o is Lipschitz continuous, twice differentiable with bounded second order
derivative. As the width of the hidden layers increase to infinity, sequentially, the hidden layer output h(*—1) (x; 0) converges
to the solution of the differential equation

du(Lfl,l)(t)

- _ _H(Lfl,l)G(Lle)(t)’

du(L_l’"Lfl)(t)

7 _ _H(L—l,nL,l)G(L—l,nL,l)(t).

where u(") (t) is the vectorized form of hF=1) (z;0), H") is the neural tangent kernel corresponding to hidden layer output,
and Gt (t) is the vectorized form of the derivative of the loss function corresponding to the hidden later output.

Proof. Let ) denote the parameters in the first £ layers. Then the parameters #() evolve according to the differential
equation

do ()
dt

= —Ve(@(t)lOSS(f(l‘i; H(t))a yl)

L [9hO (@i 6(1))
Z{ 60 (1)

T
} Voo oo 053(f (222 0(0)). i),
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3The output of any of the intermediate layer can be regarded as the extracted feature. Our analysis can be easily extend to other scenarios.



where ¢ > 0 is the continuous time index, which is commonly used in the analysis of the gradient descent with infinitesimal
learning rate. The evolution of the feature h(X—1) (x;0) of the input x;, j € [n] can be written as

dh(Lil)(:L";g(t)) n ah(Lfl)(x‘;Q(t)) ah(Lil)(fEi;e(t)) !
T T (| VA o loss(F @i 0(0). ).

=1

Let GU—1FR)(t) = (V=10 (2,500 l085(f (25 0(t)), y5)) jen) denote the gradient of the loss function corresponding to the
k-th output of the (L — 1)-th intermediate layer at time ¢, and u(L=1%) () = (R(L=2K)(2;;0(t))) je[n) denote the k-th output
of the /-th intermediate layer at time ¢, respectively. The evolution of the feature can be written more compactly as

dulE=1F) (1)

- — _H(L—l,k) (t)G(L—l,k) (t),

where H(E=1F)(t) is the matrix defined as

L ORI (24 0()) OB (10(1))
[H(L Lk) (t)]a,b = < 90(L—1) (t) ) 89(1’_1)?75) >

Applying Theorem 1 and Theorem 2 in [39], as the width of the hidden layers nq,--- ,nz_1 — 00, sequentially, we have
H@=1K) (t) converges to a fixed kernel H (L=1K) Thus, the extracted feature (i.e. the output of the (L — 1)-th layer) converges
to the solution of the system of the differential equations below

duE=11 (1)

= — —H(L_l"l)G(L_l’l)(t),

du(Lfl,’nL_l) (t)

dt _ _H(L*l,nL_l)G(Lfl,TLL_l)(t).

E. Effects of the Neural Network Architecture

We have tested neural network architecture (MLP) with different number of parameters on Colored MNIST, as shown in
Tab. 4 (estimated values), Tab. 5 (t-test) and Tab. 6 (different number of training epochs). The results demonstrate no significant
difference in the effect of various neural network architectures on the estimation of diversity and correlation shift. The results
tend to converge as model capacity increases. We also compared with other types of architectures (e.g., EfficientNet) on more
complicated datasets, PACS, in Tab. 7, where we have observed similar trends. The network architecture can have effects on
the estimation, but we expect the architecture to have enough expressive power.

Network #Params  Type ‘ SplitO  Split1  Split2  Split3  Split4

MLP (dim=16) 0.006’TM  Dgy | 0.0001 0.0001 0.0002 0.0001 0.0001
Deor | 0.8280 0.7838 0.7752 0.8004  0.7727

MLP (dim=32) 0.0140M  Dgy | 0.0001 0.0002 0.0002 0.0002 0.0000
D¢ | 07067 0.7055 0.7011  0.4299 0.6807

MLP (dim=64) 0.0299M  Dgy | 0.0000 0.0000 0.0001 0.0000 0.0000
Deor | 0.6901  0.7279  0.7096  0.7366  0.7195

MLP (dim=200) 0.1205M  Dgy | 0.0000 0.0003 0.0000 0.0000 0.0000
Deor | 0.6780  0.5684  0.6628 0.6679  0.6305

MLP (dim=390) 0.3089M  Dgy | 0.0000 0.0000 0.0000 0.0000 0.0000
Deor | 0.6971  0.6788  0.6680 0.7343  0.6846

MLP (dim=1024)  1.4603M  Dgy | 0.0000 0.0000 0.0000 0.0000  0.0000
Deor | 0.6609 0.6639 0.6701 0.6765 0.6248

ResNet-18 11.1724M  Dgy | 0.0000  0.0000 0.0000 0.0000 0.0001
Deor | 0.6677  0.6833  0.6802 0.5834  0.5809

Table 4. Estimated diversity and correlation shift of Colored MNIST on networks with different capacity.



Network # Params MLP MLP MLP MLP MLP MLP ResNet-18
(dim=16) (dim=32) (dim=64) (dim=200) (dim=390) (dim=1024)

MLP (dim=16) 0.0067"M 1.0000 0.6740 0.8348 0.7189 0.7799 0.7035 0.6581
MLP (dim=32) 0.0140M 0.6740 1.0000 0.8277 0.9480 0.8832 0.9639 0.9852
MLP (dim=64) 0.0299M 0.8348 0.8277 1.0000 0.8777 0.9428 0.8614 0.8116
MLP (dim=200) 0.1205M 0.7189 0.9480 0.8777 1.0000 0.9343 0.9838 0.9325
MLP (dim=390) 0.3089M 0.7799 0.8832 0.9428 0.9343 1.0000 0.9180 0.8672
MLP (dim=1024) 1.4603M 0.7035 0.9639 0.8614 0.9838 0.9180 1.0000 0.9485
ResNet-18 11.1724M 0.6581 0.9852 0.8116 0.9325 0.8672 0.9485 1.0000

Table 5. T-test on the estimated values between different architectures on Colored MNIST.

Network #Epochs Type | SplitO  Split1 Split2  Split3  Split4

Dgiy | 0.0000 0.0000 0.0000 0.0000 0.0000
Deor | 07667 05177  0.6465 0.1567 0.1690
Dgiy | 0.0045 0.0038 0.0016 0.0036 0.0047
Deor | 09172 0.8682  0.8099 0.9293  0.9158
Dgiv | 0.0028 0.0023 0.0016 0.0022  0.0020
Do | 08350 0.7874 0.8428 0.8871 0.8819
Dgiy | 0.0007 0.0010 0.0018 0.0005 0.0020
Do | 09248 0.9204 0.8211 0.8516 0.9763

EfficientNet-b0 (4.67M) 500
EfficientNet-b0 (4.67M) 1000
EfficientNet-b0 (4.67M) 2000

EfficientNet-b0 (4.67M) 4000

Table 6. Different number of training epochs on Colored MNIST.

Network #Params  Type Split 0 Split 1 Split 2 Split 3 Split 4
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

ResNet-18 11.1724 Dy | 0.9655 0.7852 0.8916 0.9644 | 0.8106 0.9188 0.8527 0.7553 | 0.7339 0.9283 0.8325 0.5616 | 0.9660 0.8540 0.7791 0.7075 | 0.8183 0.6170 0.8181 0.8061

Deor | 0.0000 0.0001 0.0026 0.0000 | 0.0016 0.0011 0.0024 0.0000 | 0.0015 0.0000 0.0003 0.0000 | 0.0008 0.0000 0.0013 0.0000 | 0.0000 0.0000 0.0004 0.0000

EfficientNet-b0  4.6676 ~ Dgy | 0.9169 0.7012 0.6586 0.9446 | 0.8742 0.9897 0.9708 1.5537 | 1.0244 0.9112 0.9031 0.5640 | 0.8347 0.9876 1.0300 0.6176 | 0.7596 1.1299 0.9945 1.2978

Deor | 0.0000 0.0012  0.0004 0.0000 | 0.0000 0.0000 0.0000 0.0000 | 0.0003 0.0001 0.0023 0.0000 | 0.0001 0.0003 0.0005 0.0000 | 0.0007 0.0007 0.0003 0.0000

EfficientNet-b3  11.4873 Dy, | 0.7642 0.9262 0.9982 1.1570 | 0.7940 0.8942 0.9789 0.9755 | 0.6751 1.0670 1.0302 0.8345 | 1.0010 0.5790 0.9349 0.6927 | 0.8667 1.1565 0.8798 2.6791

Deor | 0.0000  0.0000 0.0002  0.0000 | 0.0001 0.0000 0.0182 0.0000 | 0.0004 0.0004 0.0000 0.0000 | 0.0005 0.0000 0.0015 0.0000 | 0.0000 0.0003 0.0000 0.0000

EfficientNet-b5  29.3940  Dg;, | 0.8967 0.8822 0.9572 0.8732 | 0.8544 0.8792 1.1918 0.4856 | 0.6623 0.8086 0.7450 1.0365 | 0.5031 0.7685 1.1752 0.5001 | 0.8214 0.5249 1.0050 0.6596
Deor | 0.0100  0.0001  0.0000 0.0000 | 0.0002 0.0015 0.0001 0.0000 | 0.0013 0.0003 0.0041 0.0000 | 0.0048 0.0046 0.0047 0.0000 | 0.0011 0.0011 0.0025 0.0

Table 7. Different architectures on PACS.

F. Estimation Results with Error Bars

The table below lists all the results that have been plotted in Figure 3 with standard error bars. The statistics are averaged
over five runs of different weight initializations and training/validation splits.

Dataset Div. shift Cor. shift
ii.d. data 0.00 = 0.00  0.00 £ 0.00
PACS 0.81 =0.05 0.00 £ 0.00

Office-Home 0.17£0.02  0.00 £ 0.00
Terra Incognita 0.92+0.06 0.00 £ 0.00

Camelyon 1.07 £0.80 0.00 £ 0.00
DomainNet 0.43+£0.03 0.08 +0.00
Colored MNIST  0.00 £0.00 0.55=£0.13
CelebA 0.02+0.02 0.29 £0.04
NICO 0.11 £0.06 0.24 +0.08
ImageNet-A 0.02+0.00 0.06 +0.05
ImageNet-R 0.06 £0.01 0.21 £0.01

ImageNet-V2 0.01 £0.01 0.49 +£0.10

Table 8. Estimation of diversity and correlation shift.



G. Datasets

Our benchmark includes the following datasets dominated by diversity shift:

¢ PACS [46] is a common DG benchmark. The datasets contain images of objects and creatures depicted in different

styles, which are grouped into four domains, {photos, art, cartoons, sketches}. In total, it consists of 9,991 examples of
dimension (3, 224, 224) and 7 classes.

OfficeHome [9 1] is another common DG benchmark similar to PACS. It has four domains: {art, clipart, product, real},
containing 15, 588 examples of dimension (3, 224, 224) and 65 classes.

Terra Incognita [14] contains photographs of wild animals taken by camera traps at different locations in nature,
simulating a real-world scenario for OoD generalization. Following DomainBed [3 1], our version of this dataset only
utilize four of the camera locations, {L.100, 38,143,146}, covering 24, 788 examples of dimension (3, 224, 224) and
10 classes.

Camelyon17-WILDS [42] is a patch-based variant of the Camelyon17 dataset [ 18] curated by WILDS [42]. The dataset
contains histopathological image slides collected and processed by different hospitals. Data variation among these
hospitals arises from sources like differences in the patient population or in slide staining and image acquisition. It
contains 455, 954 examples of dimension (3,224, 224) and 2 classes collected and processed by 5 hospitals.

On the other hand, these datasets are dominated by correlation shift:

Colored MNIST [9] is a variant of the MNIST handwritten digit classification dataset [45]. The digits are colored either
red or green in a way that each color is strongly correlated with a class of digits. The correlation is different during
training and test time, which leads to spurious correlation. Following IRM [9], this dataset contains 60, 000 examples of
dimension (2, 14, 14) and 2 classes.

NICO [33] consists of real-world photos of animals and vehicles captured in a wide range of contexts such as “in
water”, “on snow” and “flying”. There are 9 or 10 different contexts for each class of animal and vehicle. Our version
of this dataset simulates a scenario where animals and vehicles are spuriously correlated with different contexts. More
specifically, we make use of both classes appeared in four overlapped contexts: “on snow”, “in forest”, “on beach” and
“on grass” to construct training and test environments (as in Appendix G) that are similar to the setting of Colored MNIST.

In total, our split consists of 4,080 examples of dimension (3, 224, 224) and 2 classes.

Environment Class onsnow inforest onbeach on grass

Training 1 Animal 10 400 10 400
Vehicle 400 10 400 10

Training 2 Animal 20 390 20 390
Vehicle 390 20 390 20

Validation Animal 50 50 50 50
Vehicle 50 50 50 50

Test Animal 90 10 90 10
Vehicle 10 90 10 90

Table 9. Environment splits of NICO and the number of examples in each group.

CelebA [54] is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute
annotations. It has been widely investigated in Al fairness studies [2 1,72, 98] as well as OoD generalization research [70,

]. Similar to the setting proposed by [79], our version treats “hair color” as the classification target and “gender” as
the spurious attribute. We consider a subset of 27,040 images divided into three environments, simulating the setting of
Colored MNIST (where there is large correlation shift). We make full use of the group (blond-hair males) that has the
least number of images. See Tab. 10 for more details regarding the environment splits.



Environment Class Male  Female

Training 1 blond 462 11,671
notblond 11,671 462

Training 2 blond 924 11,209
not blond 11,209 924
Test blond 362 362
not blond 362 362

Table 10. Environment splits of CelebA and the number of examples in each group.

H. Model Selection Methods

Among the three commonly-used model selection methods we used, training-domain validation and test-domain validation
are concisely described in [3 1] as follows:

* Training-domain validation. We split each training domain into training and validation subsets. We train models using
the training subsets, and choose the model maximizing the accuracy on the union of validation subsets. This strategy
assumes that the training and test examples follow a similar distribution.

* Test-domain validation. We choose the model maximizing the accuracy on a validation set that follows the distribution
of the test domain. We allow one query (the last checkpoint) per choice of hyperparameters, disallowing early stopping.

We use OoD validation in place of leave-one-domain-out validation (another method employed by [31]) out of two
considerations: (i) the Camelyon17 dataset is an official benchmark listed in WILDS [42], which inherently comes with an
OoD validation set; (ii) given k training domains, leave-one-domain-out validation is computationally costly (especially when
k is large), increasing the number of experiments by k£ — 1 times. Moreover, when £ is small (e.g. k¥ = 2 in Colored MNIST),
the leave-one-domain-out validation method heavily reduces the number of training examples accessible to the models.

* OoD validation. We choose the model maximizing the accuracy on a validation set that follows neither the distribution
of the training domain or the test domain. This strategy assumes that the models generalizing well on the OoD validation
set also generalize well on the test set.

I. ImageNet-V2 Experiment

Here we include the experiment results on ImageNet-V2 as an example for datasets exhibiting real-world distribution shift.
Experimental comparisons and discussions on ImageNet and its variants are not included in the main paper along with other
datasets for three main reasons: (i) ImageNet is seldom considered in DG literature; (ii) the ImageNet variants are released as
validation sets and the data size is relatively small (e.g., 10 images per class for ImageNet-V2); and (iii) most of the OoD
generalization algorithms assume multiple training domains, however, there is no standard way to construct a multi-domain
ImageNet. Hence, we conduct experiments with the algorithms that do not make the multi-domain assumption on ImageNet
(as training domain) and ImageNet-V2 (as test domain). These algorithms are CORAL, SagNet, and RSC. As previously
shown in Table 1, they are superior or equivalent to ERM in terms of performance on datasets dominated by diversity shift.
In comparison, the dominant shift between ImageNet and ImageNet-V2 is the correlation shift. The experiment result on
ImageNet-V2 is shown in the table below. As expected, ERM outperforms the other algorithms. Note that the relative ranking
of the algorithms is reversed from that in Table 1.

ERM CORAL SagNet RSC
324+02 319+£05 31.0+04 283+14

Table 11. Performance of ERM and OoD generalization algorithms on ImageNet-V2.



J. Hyperparameter Search Space

For convenient comparison, we follow the search space proposed in [3 1] whenever applicable.

Condition = Hyperparameter Default value Random distribution
ResNet learning rate 0.00005 1(Uniform(—5,—3.5)
batch size 32 2Uniform(3,5.5)
batch size (if CelebA) 48 9Uniform(4.5,6)
batch size (if ARM) 8 8
ResNet dropout 0 0
generator learning rate 0.00005 1Uniform(—5,-3.5)
discriminator learning rate 0.00005 1QUniform(=5,-3.5)
weight decay 0 1(QUniform(—6,—2)
generator weight decay 0 1QUniform(—6,—2)
MLP learning rate 0.001 1 Uniform(—4.5,—3.5)
batch size 64 9Uniform(3,9)
generator learning rate 0.001 1(QUniform(—4.5,—-2.5)
discriminator learning rate 0.001 1(Uniform(—4.5,~2.5)
weight decay 0 0
generator weight decay 0 0
IRM lambda 100 1Uniform(—1,5)
iterations annealing 500 1(Uniform(0,4)
iterations annealing (if CelebA) 500 1(QUniform(0,3.5)
VREXx lambda 10 1(Uniform(—1,5)
iterations annealing 500 1Uniform(0,4)
iterations annealing (if CelebA) 500 1(Uniform(0,3.5)
Mixup alpha 0.2 10Uniform(0,4)
GroupDRO  eta 0.01 1QUniform(—1,1)
MMD gamma 1 1 QUniform(—1,1)
CORAL gamma 1 1Uniform(=1,1)
MTL ema 0.99 RandomChoice(]0.5, 0.9,0.99, 1])
DANN lambda 1.0 1(Uniform(—2,2)
disc weight decay 0 1(Uniform(—6,2)
discriminator steps 1 9Uniform(0,3)
gradient penalty 0 1QUniform(—2,1)
Adam $3; 0.5 RandomChoice([0, 0.5])
MLDG beta 1 10Uniform(—1,1)
RSC feature drop percentage 1/3 Uniform(0, 0.5)
batch drop percentage 1/3 Uniform(0, 0.5)
SagNet adversary weight 0.1 1QUniform(—2,1)
ANDMask tau 1 Uniform(0.5, 1.0)
IGA penalty 1,000 1(Uniform(1,5)
ERDG discriminator learning rate 0.00005 1QUniform(=5,-3.5)
T’ learning rate 0.000005 1(Uniform(—6,—4.5)
T learning rate 0.000005 1(Uniform(—6,~4.5)
adversarial loss weight 0.5 1(QUniform(—2,0)
entropy regularization loss weight  0.01 1QUniform(—4,—1)
cross-entropy loss weight 0.05 1QUniform(—3,—1)

Table 12. Hyperparameters, their default values and distributions for random search.
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