
Supplementary File for Beta-Decay Regularization for Differentiable
Architecture Search

Peng Ye1*, Baopu Li2, Yikang Li3, Tao Chen1†, Jiayuan Fan1, Wanli Ouyang4

1Fudan University, 2BAIDU USA LLC, 3Shanghai AI Laboratory,
4The University of Sydney, SenseTime Computer Vision Group, Australia

(a) CIFAR10 (b) CIFAR100 (c) ImageNet16(a) CIFAR10 (b) CIFAR100 (c) ImageNet16

Figure 1. Accuracy of different datasets of β-DARTS with different max weights (i.e., 25/50/75/100) on NAS-Bench-201 benchmark. The
curve is smoothed with a coefficient of 0.5. Note that we only search once on CIFAR-10 dataset and report the results of different datasets.

A. Related Details
A.1. More Results about The Search Trajectories.

In Fig. 1, we present the search trajectories of differ-
ent datasets of β-DARTS with different max weights (i.e.,
25/50/75/100) on NAS-Bench-201 benchmark. Similarly,
we can see that: (1) the performance collapse issue is well
solved and β-DARTS has a stable search process; (2) the ar-
chitecture found on CIFAR-10 performs well on CIFAR-10,
CIFAR-100 and ImageNet; (3) the search process of differ-
ent datasets reach the optimal point at an early stage but in
different epochs; (4) different runs of searching under dif-
ferent max weight always find the same optimal solution.

A.2. Wide Range of The Optimal Weight.

In Fig. 2, we further show the influence of different max
weights on the searching results of β-DARTS on common
DARTS search space on CIFAR-10 and CIFAR-100. Also,
the performance of original DARTS (i.e., 97.00 on CIFAR-
10 and 82.46 on CIFAR-100) is improved on a wide range
of max weights and the optimal searching result is obtained
on multiple values of max weights.

A.3. Derivation of Eq. (8) in The Main Text.

For the optimization process of architecture parameters,
we utilize the following unified formulas to represent the
single-step update with/without regularization.
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Figure 2. The effects of different max weight of linear increase
weighting on the searching results of CIFAR-10 and CIFAR-100.

For the single-step update without regularization, via α
in Eq. (1), we can compute the softmax-activated architec-
ture parameters β as
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For the single-step update with regularization, based on
ᾱ in Eq. (1), we can further compute the softmax-activated
architecture parameters β̄ as
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Figure 3. Accuracy of different datasets of DARTS, SDARTS-RS [2] and β-SDARTS-RS on NAS-Bench-201 benchmark. The curve is
smoothed with a coefficient of 0.5. Note that we only search once on CIFAR-10 dataset and report the results of different datasets.
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Figure 4. Accuracy of different datasets of DARTS, RDARTS-L2 [1] and β-RDARTS-L2 on NAS-Bench-201 benchmark. The curve is
smoothed with a coefficient of 0.5. Note that we only search once on CIFAR-10 dataset and report the results of different datasets.
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Figure 5. Accuracy of different datasets of DARTS, SNAS [3] and β-SNAS on NAS-Bench-201 benchmark. The curve is smoothed with
a coefficient of 0.5. Note that we only search once on CIFAR-10 dataset and report the results of different datasets.

Table 1. The results of different DARTS variants and their Beta Decay regularization improved versions on NAS-Bench-201 benchmark.
Note that we only search on CIFAR-10 dataset, and perform 3 runs of searching under different random seeds.

Methods CIFAR-10 CIFAR-100 ImageNet16-120
valid test valid test valid test

SDARTS-RS 75.21/68.29/75.21 80.57/70.92/80.57 47.51/38.57/47.51 47.93/38.97/47.93 27.79/18.87/27.79 26.29/18.41/26.29
β-SDARTS-RS 91.55/91.61/91.61 94.36/94.37/94.37 73.49/72.75/72.75 73.51/73.22/73.22 46.37/45.56/45.56 46.34/46.71/46.71

RDARTS-L2 68.29/68.29/39.77 70.92/70.92/54.30 38.57/38.57/15.03 38.97/38.97/15.61 18.87/18.87/16.43 18.41/18.41/16.32
β-RDARTS-L2 91.55/91.28/91.61 94.36/93.79/94.37 73.49/71.88/72.75 73.51/71.60/73.22 46.37/46.40/45.56 46.34/46.67/46.71

SNAS 82.39/89.07/91.14 84.16/91.89/93.60 54.57/67.11/71.38 54.64/66.99/70.74 27.17/39.98/44.10 26.10/39.13/45.03
β-SNAS 91.55/91.55/91.55 94.36/94.36/94.36 73.49/73.49/73.49 73.51/73.51/73.51 46.37/46.37/46.37 46.34/46.34/46.34

DARTS(1st) 39.77 54.30 15.03 15.61 16.43 16.32
optimal 91.61 94.37 74.49 73.51 46.77 47.31

Then, dividing Eq. (3) by Eq. (2), we can obtain the in-
fluence of α with regularization on β.
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B. Combination with Other Variants

The proposed Beta Decay regularization can easily com-
bine with other DARTS variants for improving both the ro-
bustness of the search process and the generalization abil-



Table 2. The results of β-DARTS (partial data) that uses partial data (e.g. 75%, 50% and 25% of CIFAR-10) for searching on NAS-Bench-
201 benchmark. Note that we only search on CIFAR-10 dataset, and perform 3 runs of searching under different random seeds.

β-DARTS
(partial data)

Cost
(hours)

Weighting
scheme

CIFAR-10 CIFAR-100 ImageNet16-120
valid test valid test valid test

100% 3.2 0-50 91.55/91.55/91.55 94.36/94.36/94.36 73.49/73.49/73.49 73.51/73.51/73.51 46.37/46.37/46.37 46.34/46.34/46.34
75% 2.4 0-50 91.55/91.55/91.50 94.36/94.36/94.37 73.49/73.49/73.31 73.51/73.51/73.09 46.37/46.37/45.59 46.34/46.34/46.33
50% 1.6 0-100 91.55/91.44/91.55 94.36/94.34/94.36 73.49/72.74/73.49 73.51/72.75/73.51 46.37/46.56/46.37 46.34/46.59/46.34
25% 0.8 0-100 91.35/91.40/91.42 94.30/93.88/93.81 72.77/72.42/72.40 72.30/73.16/73.26 45.53/45.77/46.50 46.44/45.67/46.50

optimal - - 91.61 94.37 74.49 73.51 46.77 47.31

ity of the searched architecture. To show this, we also test
the proposed method on SDARTS-RS [2], RDARTS-L2 [1]
and SNAS [3] on NAS-Bench-201 benchmark (shown as
β-SDARTS-RS, β-RDARTS-L2 and β-SNAS). The imple-
mentation is consistent with their papers or open source
code. When adapting Beta Decay regularization, we set
the weighting schemes of SDARTS-RS, RDARTS-L2 and
SNAS as 0-50, 0-50 and 0-5 respectivley.

In Fig. 3, Fig. 4 and Fig. 5, we firstly compare the search
trajectories between different baselines and their Beta De-
cay regularization improved versions. The search trajectory
of original DARTS is also shown in each figure. As we can
see, although all these variants can improve the final result
of original DARTS, they still suffer from the performance
degradation issue. As a comparison, with the help of Beta
Decay regularization, all the improved versions have con-
tinuously rising performance and reach much higher accu-
racy than the original variants. In addition, we can see that
the architectures searched by all these variants have a poor
generalization ability, while Beta Decay regularization has
the ability to relieve this problem.

In Table. 1, we further compare the final searching per-
formance between different baselines and their Beta Decay
regularization improved versions. The searching results of
original DARTS and the optimal results of NAS-Bench-201
are also shown in the table. As we can see, Beta Decay
regularization can boost the performance of all these vari-
ants by a large margin, close to the optimal results, across
different datasets. More importantly, with Beta Decay reg-
ularization, multiple runs of searching have relatively low
variance and always find the satisfactory solution, mean-
while the architectures searched on CIFAR-10 can perform
well on CIFAR-10, CIFAR-100 and ImageNet.

C. Searching with Partial Data
In Table. 2, we show the results of β-DARTS (partial

data), which uses partial data (e.g. 75%, 50% and 25% sam-
ples of CIFAR-10 dataset) for searching on NAS-Bench-
201 benchmark. Here, we also only search once on CIFAR-
10 dataset. As we can see, even using partial data for search-
ing, β-DARTS can still maintain a SOTA performance, such
results further verify the outstanding property of our search
scheme, namely being less dependent on training data. As a
byproduct, when we use 25% samples of CIFAR-10 dataset

for searching, the time cost will be reduced by 4 times.

D. Visualization of Searched Genotypes
In Fig. 6 and Fig. 7, we visualize the genotypes of normal

and reduction cells searched on common DARTS search
space on CIFAR-10 and CIFAR-100 datasets respectively.
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Figure 6. Normal cell (left) and Reduction cell (right) discovered by β-DARTS on common DARTS search space on CIFAR-10 dataset.
(a), (b) and (c) denote the found genotypes of the 3 runs of independent searching.
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Figure 7. Normal cell (left) and Reduction cell (right) discovered by β-DARTS on common DARTS search space on CIFAR-100. (a), (b)
and (c) denote the found genotypes of 3 runs of independent searching.


