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1. Ablation Study

We provide ablation study on our entire framework, by
removing each component one at a time. We visualize the
final results and compute RMSE on the optimized region
for each material part with one scene from Photo-to-Manual
dataset as shown in Figure 1 and with 18 randomly selected
scenes over 171 materials from ScanNet-to-OpenRooms
dataset in Table 1. We demonstrate the results a) without
warping, b) with random graph selection, c) with material
classifier graph selection, d) with stat loss only, e) with
VGG loss only, f) without UV transformation parameters,
and g) without material reoptimization, as well as our full
framework and the baselines mentioned in the main paper.

Without warping, the mask and UV map cannot correctly
fetch accurate material regions for optimization. This might
lead to wrong material portions being considered due to mis-
alignment so that the overall color and the pattern are not
accurate. If we choose procedural graphs randomly from the
entire collection or conditioned on a material super-class, the
results do not have similar patterns as each procedural graph
represents a distinct type of material (e.g. wood, homoge-
neous, ... etc.). With only statistics loss, the spatially-varying
patterns become unconstrained and only match color statis-
tics without considering spatial structures. The UV parame-
ters cannot be estimated correctly and the statistics loss does
not contain structure information. With only VGG loss, the
results have similar spatial structures but are not guaranteed
to have similar color to the reference photo without statis-
tics loss. Without optimization of UV transformation, the
orientation and scale of the textures are not guaranteed to be
consistent to the reference photo. Note that even though our
full method has slightly higher RMSE than (f), its qualitative
superiority is not reflected in the metric since our optimiza-
tion objectives are to align the pixel statistics and masked
VGG features rather than per-pixel appearances. Without
material re-optimization, sometimes the initial albedo col-
ors have lighting baked-in, resulting in mismatched color
under globally-consistent lighting. It is possible to get lower
RMSE values with worse UV parameters. In sum, our full

framework generates more similar appearances to the photo
by considering all the components.

2. More Results

We demonstrate more results on ScanNet-to-OpenRooms,
Photos-to-Manual, SUN-RGBD-to-Total3D material and
lighting transfer results with novel view and relighting re-
sults in Figure 3, 4, 5, 6 and supplementary videos.

We also provide results with panoptic labels predicted by
MaskFormer [1] instead of ground truth labels for ScanNet-
to-Openrooms, and compute the results with baselines with
randomly selected 62 scenes and over more than 521 ma-
terials, as shown in Table 2. The RMSE errors are slightly
higher when using panoptic predictions, but still lower than
baseline methods with panoptic ground truths. This demon-
strate that our method is robust to imperfect input mask and
outperform baseline methods regardless the input masks.

3. Additional Details for Proposed Method

3.1. Initialization and Alignment (Sec. 3.1)

Consensus-aware view selection. When a video sequence is
available as input, we subsample views that are at least 30◦ or
1m apart, then choose the optimal view among them for opti-
mizing each material part. We choose the best view based on
three criteria – coverage, field-of-view and consensus. We
expect good material transfer from those input images where
a substantial number of pixels from the material part are ob-
served. To ensure they occupy a favorable field-of-view, we
weigh the number of pixels with a Gaussian, G, centered at
the middle of the image and with variance one-fourth of the
image dimensions. Finally, the goodness of a material part
in a given view is also determined by the number of other
views, ni, where material estimates are in consensus, which
is determined as the L2-norm of the mean and standard de-
viations of the per-pixel albedo and roughness predictions
from InvRenderNet. We choose the view with the highest
value of ni ·

∑
(G⊙Mphoto) as the one to use for material
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Figure 1. Ablation study on our entire framework with one selected scene from Photos-to-Manual. We compare the results by removing
different modules from our full framework: a) without warping, b) with random graph selection, c) with material classifier graph selection,
d) with stat loss only, e) with vgg loss only, f) without UV transformation parameters, and g) without material reoptimization, as well as our
full framework and the baselines mentioned in the main paper.

Baseline Methods Ablative Variants of PhotoScene PhotoScene
Classifier InvRend. Med. Pixel Med. (a) (b) (c) (d) (e) (f) (g) Full

RMSE 0.448 0.381 0.314 0.250 0.255 0.251 0.249 0.326 0.243 0.272 0.244

Table 1. Similarity evaluation between rendering results and reference photo on 18 selected scenes of the ScanNet-to-OpenRooms dataset,
for baseline methods, various ablations and the full version of the proposed PhotoScene approach.

Classifier InvRend. Med. Pixel Med. Ours
RMSE (GT Mask) 0.453 0.337 0.342 0.259

RMSE (Pred. Mask) 0.467 0.373 0.354 0.285

Table 2. Similarity evaluation between baselines rendering results and reference photo with ScanNet-to-OpenRooms dataset using ground
truth panoptic labels versus predictions from MaskFormer [1].

transfer.
More details on material part mask and mapping. We re-
gard material part segmentation as non-trivial, since material
parts are ambiguous, e.g. table legs can be treated as sepa-
rated parts or same part as the entire table. We found that
the instance-based segmentation from MaskFormer already
provides robust candidates which can later be refined by the
mapping and alignment with geometry mask Mgeo. Again,
we can always provide better segmentation from manually
labeling or existing dataset.

When MaskFormer does not detect a valid mask or 3D
shapes have too small parts or highly different geometries
from the image, we cannot find a large enough mask. We
determine these failure situations by setting a threshold on
the number of valid pixels inside a mask which can be used
for optimization, and simply compute median values on
the valid pixels, or on geometry mask Mgeo if no valid
pixels at all. To be specific, we first compute a per-pixel
weight map Waln by the dot product between aligned normal
from InvRenderNet N inv and normal from geometry Ngeo

and then define the valid pixels by computing the number
of pixels with the above dot product larger than 0.95 as J
and only run our optimization if J ≥ 500, otherwise, we
compute median for small masks where J < 500. If there
is no mask candidate being matched by IoU, we simply use

Mgeo to compute median.

The weight map Waln is also multiplied with Maln to
obtain a weighted mask when computing mask-based losses
during optimization.

Alignment and warping. Let Mgeo be the 2D material part
mask rendered from geometry under corresponding views
and Mphoto be the mask for the reference photo. We first
decompose Mgeo and Mphoto into sub-masks {M i

geo} and
{M j

photo} which represents a single instance (if there are
multiple instances), and search for matching instance pairs
by the highest mIoU values on soft instance submasks. If
semantic labels for both photo and geometry are available,
we can use it to reduce the sub-masks by selecting corre-
sponding semantics. Here soft means we apply a Gaussian
filter on the instance submask with mean set as the center
of mask bounding box and standard deviation set as half of
width and height of bounding box, respectively.

After finding the matching pairs of part instances, we need
to find the warping relationship between Mgeo and Mphoto

so that we can warp UVgeo to ÛV geo ≈ UVphoto, which is
used to sample material parameters from UV space to image
space in our material part-based differentiable rendering
module. We formulate the warping as scaling and translation
from bounding box Bgeo of Mgeo to bounding box Bphoto
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Figure 2. Example of part segmentation matching and UV warping between geometry and input image.

of Mphoto to avoid unnecessary rotations. Let cg and lg be
the center and size of Bgeo and cp and lp be the center and
size of Bphoto. While cg, cp and lg, lp can be computed by
minimum and maximum pixel locations in x and y directions
of Mgeo and Mphoto, we can further find optimal c∗g and l∗g
by optimizing intersection-over-union:

max
cg,lg

Mphoto ∩ M̂geo

Mphoto ∪ M̂geo

, (1)

to ensure higher percentage of overlap between M̂geo (the
warped Mgeo) and Mphoto.

We warp the UV map ÛV geo by

x∗
s = (xt − cp)/lp ∗ l∗g + c∗g, (2)

ÛV geo(xt) = UVgeo(x
∗
s) ≈ UVphoto(xt). (3)

Finally, we derive the warped material part mask Mopt
g→p and

UV map UV opt
g→p for optimization by overlapping regions

after warping:

Mopt
g→p = M̂geo ∗Mphoto, M̂geo(xt) = Mgeo(x

∗
s), (4)

UV opt
g→p = ÛV geo ∗Mopt

g→p. (5)

Please see Figure 2 for an illustration. In the material opti-
mization stage, Maln refers to Mopt

g→p.
With the improved view-consistent representation of light

sources, we re-optimize the materials to achieve more accu-
rate appearance in the material reoptimization stage. How-
ever, the per-pixel lighting bakes-in the geometry in certain
views, which necessitates all inputs to be aligned with the
geometry. So, we warp the reference photo Iphoto and the
material part mask Mphoto to match the geometry. We again
define bounding box parameters lp and cp to compute the
warped M̂photo from Mphoto to match Mgeo:

x∗
s = (xt − cg)/lg ∗ lp + cp, (6)

M̂photo(xt) = Mphoto(x
∗
s) ≈ Mgeo(xt), (7)

Mopt
p→g = M̂photo ∗Mgeo, Ioptp→g = Îphoto ∗Mopt

p→g.(8)

Therefore, Maln refers to Mopt
p→g in the material reoptimiza-

tion stage.

4. Additional Details for Experiments

4.1. Material Classifier Implementation (Sec. 4.3)

The material classification model is based on ResNet-
18 [2] backbone. We represent 2D convolution by Conv2D(C,
K, S, P) where C is the output channels, K is the kernel
size, S is stride and P is padding. Other operations in the
model include BN for 2D batch normalization, ReLU, and
Maxpool(K, S) for 2D max-pooling of kernel size K and
stride S. The model takes the concatenation of the image
and a binary mask of size 240×320×4 as input, followed
by Conv2D(64, 7, 2, 3), BN, ReLU, Maxpool(3, 2), and
modules conv2.x, conv3.x, conv4.x, conv5.x from ResNet-
18, and 2D average-pooling, resulting by a feature vector
of dimension 512. With the feature vector as input, a fully-
connected (FC) layer classifies over 886 bins of materials and
another FC layer classifies over 9 super-classes. A standard
cross-entropy loss is used for the classification heads.

4.2. User Study Details (Sec. 4.3)

There are 60 random AMT users; each is asked to make
a different binary comparison for each of 20 scenes without
pre-training on our task. In each comparison, we ask users to
choose the better set of multi-view renderings of transfer re-
sults between ours and one randomly sampled baseline from
{cls, inv med, pix med}. Two options are randomly placed
while the input photo is in the middle. Each comparison is
evaluated by 20 different users.

5. Potential Negative Impacts

Our approach can synthesize high-quality digital counter-
parts of real scenes which may be rendered to create pho-
torealistic images. Using a physically-based material prior
also allows the ability to edit properties of these images by
generating plausible new materials for specific regions or
objects, which may be used for potentially harmful purposes.
An avenue to overcome this negative impact might be further
research in digital watermarks such as [3] for materials gen-
erated through our material priors, embedded in a manner
that allows them to persist in an identifiable way through the
rendering process.



Figure 3. More results of material and lighting transfer with ScanNet-to-OpenRooms dataset.
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Figure 4. More results of material and lighting transfer with ScanNet-to-OpenRooms dataset.



Figure 5. More results of material and lighting transfer with ScanNet-to-OpenRooms dataset.

Figure 6. More results of material and lighting transfer with SUN-RGBD-to-Total3D dataset.
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