Appendix
A. Experiment Details

A.1. Implementation Details

For CIFAR datasets, we use the model PreAct Resnet18
[19]. For ANIMAL-10N, we use a random initialized model
Resnet18 [19]. For ClothinglM, we use an ImageNet pre-
trained model Resnetl8 [19]. We illustrate our framework
in Figure 5. The projection MLP is 3-layer MLP and
the prediction MLP is 2-layer MLP as proposed in Sim-
siam [9]. We use weak augmentations A, : X — X
including random resized crop and random horizontal flip
for optimizing the cross entropy loss L... Following Sim-
Siam [9] [7], we use a strong augmentation A, : X — X
applied on images twice for optimizing the contrastive regu-
larization term L. Specifically, {z;} = f(As({z:})) and
{a:} = h(f(As({z;})) for every example x;, where one
strong augmented image is for calculating z and another is
for calculating q.

A.2. Algorithm

According to our gradient analysis on two different clean
images x;,x; with y; = y; and a noisy image x,, with
Ym = Vi, apply the regularization function Eq. (8) can avoid
representation learning dominated by the wrong contrastive
pair (2, x,,). The analysis does not cover the same im-
age with two different augmentations. When applying the
strong augmentation twice, each image x has two different
augmentations z’, z”’. The contrastive pair (z’, ") will also
dominate the representation learning given the property of
Eq. (8). However, focusing on learning similar represen-
tations of (2’,2") does not help to form a cluster struc-
ture in representation space. As mentioned in [4 1], learn-
ing this self-supervised representations causes representa-
tions of data distributed uniformly on the unit hypersphere.
Hence, we want the gradient from the pair (z’,2") to be
smaller when their representations approach to each other.
We use the original contrastive regularization to regularize
the pair (2’, 2"). The pseudocode of the proposed method
is given in Algorithm 1.

A.3. Hyperparameters

CIFAR. Our method has two hyperparameters A and 7.
For each noise setting for CIFAR-10, we select the best hy-
perparameters: A from {50, 130} and 7 from {0.4, 0.8}.
For each noise setting for CIFAR-100, we select the best
hyperparameters: A from {50, 90} and 7 from {0.05, 0.7}.
The batch size is set as 256, and the learning rate is 0.02
using SGD with a momentum of 0.9 and a weight dacay of
0.0005.

ANIMAL-10N & ClothinglM. For ANIMAL-10N, we
set A = 50, 7 = 0.8 and batch size is 256. The learning rate
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Figure 5. Ilustration of our framework.

is set as 0.04 with the same SGD optimizer as the CIFAR
experiment. For ClothingIM, we set A = 90, 7 = 0.4 and
batch size is 256. The learning rate is set as 0.06 with the
same SGD optimizer as above.

B. Proofs of Theoretical Results
B.1. Proof for Theorem 1

Theorem. Representations Z learned by minimizing
Eq. (1) maximizes the mutual information I(Z; X™T).
Proof. We first decompose the mutual information
I(Z; XT):
p(Z|XT)

p(Z)
=Ex+ EZ|X+ [IOgP(Z|X+)] —Ezx+ [p(2)]
=—Ex+[H(Z|X")] + H(Z).

I(Z; X™T) =Ez x+ log

The first term Ey+ [H(Z|X )| measures the uncertainty
of Z| X, which is minimized when Z can be completely
determined by X *. The second term H(Z) measures the
uncertainty of Z itself and it is minimized when outcomes
of Z are equally likely.

We next show that Z can be completely determined by
X T when minimum of Eq. (1) is achieved and uncertainty
of Z itself is maintained by an assumption about the frame-
work. By the Cauchy-Schwarz inequality,

EX,XJr [Ectr(X, X+)] Z]EX,X+ [||6H2||2+||2
+la (|20, = —2.

The equality is attained when ¢ = 27 and ¢© = Z for all
x,z " from the same class. For any three images x1, T2, T3
from the same class, we have:

f(x1) = g(3), f(22) = g(x3),

where ¢ = h(f(-)). We can find f(z1) = f(z2) for
any images x1,xs from the same class. The result can



Algorithm 1: CTRR Pseudocode in a PyTorch-like style

Training
f: backbone + projection mlp
h: prediction mlp

=

i

i

# g: backbone + softmax linear classifier

for x, y in loader:
bsz = x.size(0)
x1, x2 = strong_aug(x), strong_aug(x) # strong random augmentation
x3 = weak_aug(x) # weak random augmentation

z1l, z2 = f(x1), f(x2)
gl, g2 = h(zl), h(z2)

p = g(x3)

# compute representations

cl = torch.matmul (gl, z2.t()) # B X B

c2 = torch.matmul (g2, zl.t()) # B X B

# compute contrastive loss for each pair

ml = torch.zeros(bsz, bsz).fill _diagonal_ (1) # identity matrix
m2 = torch.ones (bsz, bsz).fill_diagonal_(0) # l-identity matrix
# - <i,1i> + log(l-<i, 3>)

cl = —cl*ml + ((l-cl).log()) = m2
c2 = —c2xml + ((1-c2).log()) * m2
c = torch.cat([cl, c2], dim=0) # 2B X B

# compute probability threshold
probs_thred = torch.matmul (p, p.t(
mask = (probs_thred >= tau).float(
probs_thred = probs_thred % mask

# normalize the threshold

)
)

) .fill_diagonal_ (1) .detach() # B X B

weight = probs_thred / probs_thred.sum(l, keepdim=True)

weight = weight.repeat((2, 1)) # 2B X B

loss_ctr = (contrast_logits x weight) .sum(dim=1) .mean (0)

be easily extended to the general case: f(X;) = f(X3)
for any (X1,Y7) ~ P(X,Y),(Xs,Y2) ~ P(X,Y) with
Y; = Y,. Thus Z can be determined by X ™ with the equa-
tion Z = f(XT), which minimizes Ex+ [H(Z|XT)].
When p(Z = ¢,|Y = y) = ‘71|, the entropy H(Z)
is maximized. With extensive empirical results in Sim-
siam [9], we assume the collapsed solutions are perfectly
avoided by using the SimSiam framework. By this assump-
tion, ¢; # ¢, for any j # k. The model learns different
clusters ¢, for different y and representations with differ-
ent labels have different clusters. Therefore, for a balanced
dataset, the outcomes of Z are equally likely and it maxi-
mizes the second term H (7). In summary, the learned rep-
resentations by Eq. (1) maximizes the mutual information
I(Z; XT). O

B.2. Proof for Theorem 2

Theorem. Given a distribution D(X,Y,Y) that is (e,~)-

Distribution, we have
I(X;Y)—e<I(Z%Y)<I(X;Y), (11)
I(Z%Y)<I(X;Y) -y +e (12)

Proof. The Theorem builds upon the Theorem 5 from [39].

We first provide the proof for the first inequality, which can

also be obtained from [39]. Then we provide the proof for
the second inequality.

For the first inequality, by adopting Data Process-
ing Inequality in the Markov Chain ¥ < X —
Z, we have I(X;Y) > I(Z;Y) for any Z €
Z. Then, we have I(X;Y) > I(Z*Y). Since
Z* = argmaxy, I(Zp; X), and I(Zp; X) is maxi-
mized at [(X; X™T), then I(Z*;X*) = I(X;X™) and
I(Z*; X1|Y) = I(X; XT|Y). Meanwhile, use the result
I(Z*;X+;Y) = I(X; X*;Y), which is given by

I(Z5 X0 Y)=1Z5XT) - 1(Z; XT]Y)
= I(X; X)) — I(X; XH|Y)
=I(X; XHY),

we have

I(Z%Y)=I(X; X Y)+ I(Z%Y]|XT)
=I(X;Y) - I(X;Y|XT)+I(Z%Y|XT).
13)
Thus, by Eq. (13) and the Definition 1, we get

Now we present the second inequality I(Z*;Y) <
I(X;Y)—~v+e



Similarly, by Eq. (13), we have

~I(X;Y XY+ I(Z5Y|XT)

(15)
<I(X;Y) =~y +1(Z%5Y|XT) (16)
<I(X;Y) =~y +1(Z%5Y|XT) (17)
<I(X;Y)—v+e (18)

, where the first and the third inequalities are by the def-
inition 1; the second inequality is by the Data Processing
Inequality in the Markov Chain Y <Y < X — Z.

O

B.3. Proof for Lemma 1

Lemma. Consider a pair of random variables (X,Y). Let
Y be outputs of any classifier based on inputs Zy, and é =
1{Y # Y}, where 1{ A} be the indicator function of event
A. Then, we have

Proof. If we are given any two of {¢ = 1},Y, Y, the other
one is known. By the properties of conditional entropy,
H(Y ,é|Y, Zy) can be decomposed into the two equivalent
forms.
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H(Y &Y, Zp) = H( \Zg) + H(EY, Zy)
=HGW;YZ>+HdﬁZ%) (19)
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The first equality can also be decomposed into another
form:

H( 7é|YaZ9)
:H(~|~,Y/a29)+H(é‘Y7 Z9)
=p(e=1)H(Y|e =1,Y, Zy)

Relating Eq. (19) to Eq. (20), we have

H(Y|Y,Zy) — H(E|Y, Zy)
H(Y|e=1,Y,Z)

S H(Y|Y, Zy) — H(E|Y, Zy)
- log (|¥] - 1)

H(Y|Y,Zy) -~ H()

log (|¥] - 1)

H(Y) - I(Y:Z,Y) — H(e)
B log (|¥] - 1)
—I(Y; Zy) — H(e)
log (|¥] = 1)
The first inequality is by H(Y|e = 1Y,Z,) <
log (|| — 1), where Y can take at most || — 1 values. For
the second inequality,

Efe] =

H(®Y)

H(EY, Zg) = H(&) ~ 1(&;Y, Zo)
<H(E
For the last equality,
I(Y;29,Y) =H(Zy,Y) - H(Zy, YY)

=H(Zy) + H(Y|Zp)
— H(Zy|Y) = H(Y|Zy,Y)

=1(Z,Y) + 1(Y;Y|Zp)

=1(Zy.Y),

where I(Y'; 1:/|Zg) = 0 given the Markov Chain Y « Y
X —=Z=Y:

1(Y;Y|Zg) =H(Y|Zg) — H(Y|Zy,Y)
= H(Y|Zy) — H(Y|Zp) = 0
O
B.4. Proof for Lemma 2
Lemma. Let R(X) = inf,Exy[L(g9(X),Y)] be the

minimum rzsk over the Jjoint distribution X X Y, where

L(p,y) = Zz 1 y @ logp¥) is a CE loss and g is a func-
tion mapping from input space to label space. Let R(Z*) =
infy Ez« v [L(9'(Z%),Y)] be the minimum risk over the
Jjoint distribution Z* X Y and g’ maps from representation
space to label space. Then,

R(Z*) < R(X) +¢

Proof. The lemma is given by the variational
form of the conditional entropy H(Y|Z*) =
infy Ez« v [L(¢'(Z%),Y)] [I1, 22].  According to a
property of mutual information,

I(A; B) = H(A) — H(A|B),



we have R(Z*) = H(Y) — I(Z*;Y). By the results of
Theorem 2,
R(Z*) <H(Y) = I(X;Y) + ¢
=H(Y]X) = inf Ex y [£(g(X),Y)]-

O

C. Gradients of Contrastive regularization
Functions

For the contrastive regularization function

£éu—(xi7mj) _ _( qi ) Zj + d; . Zi 7
lailly Wzilly  Naslly =il
we only consider the case 1{p/p;, > 7} = 1 be-
cause L (z;,2;) is not calculated in the algorithm when
1{p]p; > 7} = 0. We assume that h is an identity func-
tion and x;, x; are from the same class for simplicity.

Leta = ||gill,, b=gi, = —Zi_andc = g. According

H Zj H2
to the equation a? = b b, we differentiate both side of the
equation and get

2ada =2b" db. (1)
In the meanwhile,
Ve

a

d(b"2)a — dab" x

) = a2
(21) ar’db  bT dbbTx
= — —

o

a a3
2T db  a?cTzel db
a as
1
= - (zT — chcT) db.
a

Taking a, b, c and x back to the equation, we get the result

OLy(rizy) 1 a4l g
9q; lailly Mgl llaillallaslly gl ™
Note that z; = Stopgrad(g;) because of the identity map
h.Letc¢; = 1/||q1||§ and then we have
H L (i, ;)
9q;

Similarly, for the contrastive regularization function

Ectr(xhxj) :<10g (1 - < & % >)

2

=ci(1— (3 @)°)

NEE
qj Zi
+log (1 — ( , ) >,
= Tl
OLer(wiry) 1 OL(wiy)
9q; 1—-q;'q 0¢;

=ci(1+ G d;).
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