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A. Implementation Details
Network Structure. We schematically visualize the net-
work structures in our kinematics module in Fig. 7. The
recurrent neural network (RNN) PL, PA, RA, VA, and CF

share the same structure. Each network includes a linear
input layer with a ReLU activation, two Long Short-term
Memory (LSTM) [92] layers with the width of 256, and
a linear output layer. A 40% dropout is applied to pre-
vent over-fitting. The RNN CF is finally activated by a
Sigmoid function to obtain probability values. The ini-
tial states of PL and VA are regressed from the starting
leaf joint positions p(0)

leaf and joint velocities v(0) using the
fully-connected network (FCN) IPL and IVA, respectively.
Each FCN consists of 3 fully-connected (FC) layers with
the width of 256, 512, and 1024 using the ReLU activation.
The output of the FCN is used to initialize the hidden/cell
states of the two LSTM layers of the RNN at the beginning.
Rotation Representation. The inertia input vector x con-
sists of accelerations and rotation matrices, which are ob-
tained after the calibration. The output of RA is the non-
root joint rotations w.r.t the root parameterized in the 6D
representation [107]. Combining the estimated non-root
joint rotations with the root orientation measured by the
IMU placed on the pelvis, we obtain the vector φ. The
character pose in the physics module is described by local
joint rotations (i.e., each joint relative to its parent) in Eu-
ler angles, which is denoted as θ. The configuration vector
q = [rroot θ] is then composed of the root translation and
the pose in Euler angles.
Datasets. Following [105], we use the AMASS [96] dataset
and the train split of the DIP-IMU [93] dataset for the net-
work training, and use the TotalCapture [102] dataset and
the test split of the DIP-IMU dataset for evaluation. For
AMASS, we synthesize the IMU measurements and foot-
ground contact labels as proposed by Yi et al. [105], and
synthesize the ground-truth joint velocities using:

vGT(t) = (RGT
root(t))

−1(rGT(t)− rGT(t− 1))/∆t, (14)

Figure 7. Detailed structures of the recurrent neural network
(RNN) and the fully-connected network (FCN) in our kinemat-
ics module. ”FC” represents a fully-connected layer. The output
dimension and other hyper-parameters are marked in each block.

where RGT
root(t) ∈ R3×3 is the ground-truth root orientation

at frame t; rGT ∈ R3J is the ground-truth joint global po-
sitions; ∆t is the frame interval. We also re-calibrate the
acceleration measurements in TotalCapture, as we find that
they are constantly biased (see Fig. 8). Specifically, to re-
move the bias, we synthesize the accelerations for Total-
Capture using the method of Yi et al. [105] and align the
mean acceleration measurement for each sequence to the
mean synthetic values by adding or subtracting a constant.
Gain Parameters for PD Controllers. The gain parame-
ters kpθ

, kdθ
, kpr , and kdr of the dual PD controller intro-

duced in Sec. 3.2.2 are derived as follows. Take the joint
rotation controller (controlling θ) as an example. As we
use first-order approximations in the dynamic states updater
(Sec. 3.2.4), we apply first-order Taylor expansion on θ and
θ̇, and rearrange the equation, which writes:

θ̈(t) =
1

∆t2
(θ(t+ 2∆t)− θ(t+∆t))− 1

∆t
θ̇(t), (15)

where ∆t = 1/60 is the time interval between frames. By
associating this equation with Eq. 3 and Eq. 5 in the main
paper, the proportional gain kpθ

and kpr
should be 3600,

and the derivative gain kdθ
and kdr

should be 60. For the
joint rotation controller, setting the proportional gain kpθ

to
a lower value gives smoother angular accelerations. Thus,
we set kpθ

to 2400 in our experiments.
Other Details. We use a laptop with an Intel(R) Core(TM)
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Method DIP-IMU
SIP Error Ang Error Pos Error Mesh Error Rel Jitter Abs Jitter ZMP Dist Latency

Offline DIP [93] 16.36 14.41 6.98 8.56 2.34 - - -
TransPose [105] 13.97 7.62 4.90 5.83 0.13 0.85 0.59 -

Online
DIP [93] 17.10 15.16 7.33 8.96 3.01 - - 117

TransPose [105] 16.68 8.85 5.95 7.09 0.61 1.46 1.67 94
PIP (Ours) 15.02 8.73 5.04 5.95 0.23 0.24 0.12 16

Method TotalCapture
SIP Error Ang Error Pos Error Mesh Error Rel Jitter Abs Jitter ZMP Dist Latency

Offline DIP [93] 18.47 17.54 9.47 11.19 2.91 - - -
TransPose [105] 14.71 12.19 5.44 6.22 0.16 0.91 0.76 -

Online
DIP [93] 18.62 17.22 9.42 11.22 3.62 - - 117

TransPose [105] 16.58 12.89 6.55 7.42 0.95 1.87 1.40 94
PIP (Ours) 12.93 12.04 5.61 6.51 0.20 0.20 0.23 16

Table 3. Comparison with the state-of-the-art methods on more metrics. PIP outperforms previous online methods on all metrics with
much less latency, while also achieves comparable capture accuracy but higher physical correctness when compared with previous offline
methods. This demonstrates the superiority of our system which runs in real-time with extremely small latency.

i7-10750H CPU and an NVIDIA RTX2080 Super graph-
ics card to run the experiments and the live demos. We
use PyTorch 1.8.1 with CUDA 11.1 to implement our kine-
matics estimator, and leverage the Rigid Body Dynam-
ics Library [90] to implement our physics-based optimizer.
The live demo is implemented using Unity3D. We use
Noitom Perception Neuron series [95] IMU sensors in our
demo. Both training and evaluation assume 60 fps sensor
input. The training data is additionally clipped into short
sequences in 200-frame lengths for more effective learning.
Specifically, we separately train each RNN in the kinemat-
ics module using the synthetic AMASS [96] dataset with a
batch size of 256 using the Adam [94] optimizer, and fine-
tune PL (together with IPL), PA, and RA on the train split
of the DIP-IMU dataset, following [105]. We do not train
VA and CF on DIP-IMU as it does not contain global move-
ments.

B. Comparisons on More Metrics

In this section, we show the comparison results with the
previous state-of-the-art methods [93, 105] on more met-
rics. In addition to the metrics used in the main paper,
we also evaluate 1) Angular Error: the mean rotation er-
ror of all body joints in the global space in degrees; 2) Po-
sitional Error: the mean position error of all body joints
in the global space with the root position and orientation
aligned in cm; 3) Relative Jitter: the jitter calculated in the
local (root-relative) frame in km/s3, where the root trans-
lation is not considered. Notice that due to the length limit
of the main paper, we only showed the mesh error as it in-
corporates both angular and positional error, and the SIP
error as it is directly related to motion ambiguities in the
main text. Here, we report the results on more metrics for a
fair comparison. We also evaluate previous offline methods
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Figure 8. The acceleration measurements in the TotalCap-
ture [102] dataset is constantly biased. We visualize the accel-
erations (x-axis component) measured by IMUs in blue and the
one computed from the subject motions based on Vicon [103]
by a finite-difference method in orange. We can see an obvious
constant bias in the IMU acceleration measurements (blue) based
on the fact that real accelerations should be approximately zero-
centered.

for references, which need to pre-record the inertia mea-
surements during the whole motion and estimate the motion
with the help of the complete inertia sequence. The results
on TotalCapture [102] and the test split of DIP-IMU [93]
dataset are shown in Tab. 3. We outperform previous on-
line methods on all metrics with largely reduced latency,
which demonstrates the accuracy and effectiveness of our
approach. Moreover, compared with the offline methods,
PIP achieves comparable motion accuracy (reflected in the
first 5 metrics) but higher physical plausibility (reflected in
Absolute Jitter and ZMP Distance). We attribute this to the
physics-based motion optimizer proposed in the main pa-
per. Most importantly, our system runs in real-time, while



the offline approaches require the access to the complete in-
ertia sequence. Thus, our approach significantly closes the
gap between online and offline methods, and enables a wide
variety of real-time applications such as gaming.

C. Discussions and Future Works
Quantitative Evaluations of Physics. A direct quantita-
tive evaluation of physics (e.g., joint torques and ground
reaction forces) would be advantageous. However, to the
best of our knowledge, there is no public dataset contain-
ing both IMU measurements and ground-truth forces (either
joint torques or ground reaction forces). We believe that
creating such a dataset requires research on its own, and
would have great value for the community. For now, we
can only provide qualitative visualization of torques/GRFs
in our supplemental video and Fig. 5, which is intuitively
plausible and in line with the references [99, 106]. Be-
sides, as the output motion is entirely driven by the esti-
mated forces, the quantitative evaluation of the motion can
also implicitly demonstrate the quality of our force estima-
tion. Furthermore, we use jitter (jerk) and ZMP distance as
indirect quantitative evaluations of the physics estimation,
which reflect the naturalness [91] and equilibrium [104] of
the motion, respectively. Since we do not adopt any explicit
penalty on these two metrics, nor do we use any temporal
filter or balancing technique on the motion, the better results
on these two metrics actually suggest the improved physical
correctness achieved by our motion optimizer.

Regarding the ground contact evaluation, previous
works [100, 101] use mean penetration error to evaluate the
non-physical foot penetration. As we explicitly model the
contacts as hard constraints, both sliding and ground pen-
etration are strictly avoided with any contacting part of the
body. Thus, these errors would be zero.
Zero Moment Point vs. Center of Pressure. Previous
works [97, 98] use Center of Pressure (CoP) accuracy to
quantify the force estimation, which is related to our Zero
Moment Point (ZMP) distance. Here we point out the dif-
ference between these two notations and the reason why we
choose to use ZMP distance. The pressure between the hu-
man body and the ground can be represented by a force ex-
erted at the CoP. If such a force can balance all active forces
acting on the human body during the motion, the human
body is in dynamic equilibrium, and ZMP coincides with
CoP (i.e., within the support polygon). However, when the
force acting on the CoP cannot balance other forces, the hu-
man will fall down about the foot edge, and the ZMP (more
precisely, the fictitious ZMP) will be outside the support
polygon, whose distance to the polygon is proportional to
the intensity of the unbalanced force. In such cases, CoP
is on the border of the support polygon as the ground reac-
tion forces cannot escape the polygon. Thus, the reason to
use ZMP distance in our physics evaluation becomes clear:
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Figure 9. Pose drifts in a perfectly-still sitting pose. We evalu-
ate PIP on 4.6-hour artificial inertia measurements with zero ac-
celerations and fixed orientations of a sitting pose. We plot the
accumulated orientation error of all body joints over time and pick
four frames for visualization. Our system stably estimates a sitting
pose during the entire sequence with a total drift of 4.2 degrees.

since the estimated motion cannot be perfectly physically
correct and contains unbalanced movements, the ZMP dis-
tance can better reflect the disequilibrium in the captured
motion. On the other hand, evaluating CoP accuracy needs
a more sophisticated modeling of human feet (rather than
a simplified square facet contact) and ground-truth pressure
annotations, which we leave as a future work. For more
detailed introductions of ZMP, readers are referred to [104].
Drifts in Long-term Tracking. As a purely inertial sensor
based approach, PIP inevitably suffers from drifts in long-
term tracking. As measured in Fig. 3, the translation drift
of our system depends on how far the subject moves, and
is about 4.6% in our experiments. Regarding the subject’s
pose, we do not see an evident drift in our experiments.
This may be because the subject is always moving, and
the orientation and acceleration measurements effectively
confine the possible human pose. Therefore, it is interest-
ing to examine the pose drift in still poses, especially for
the ambiguous ones like sitting. However, as the IMUs al-
ways have small noises and humans cannot keep perfectly
still for a long time, it is difficult to quantify the pose drifts
in real settings. Thus, we conduct a toy experiment where
we artificially set all acceleration measurements to zero and
orientations unchanged at the point after the sit-down mo-
tion in Fig. 6, i.e., to simulate a perfectly-still sitting pose.
As shown in Fig. 9, our system can keep estimating sitting
poses stably with a total drift of 4.2 degrees for all body
joints at 1 million (4.6 hours) frames. This demonstrates
the robustness of our system in long-term tracking, which is
ensured by the RNNs and the learning-based RNN initial-
ization scheme. We also conduct a live experiment where
our method can track long-period sitting for half an hour
stably and is not getting worse as time goes by. Please refer
to our supplementary video for more results.
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