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Abstract

In this supplementary material, we provide more details
of the implementation and experiment settings in Section A,
a brief review of Bingham distribution and matrix Fisher
distribution as well as the derivation of important proper-
ties in Section B, more experiment results in Section C, and
the distribution visualization method in Section D.

A. Implementation and Experiment Details
A.1. Baselines in NVSM

In the main paper, we compare our algorithm with
NVSM [18] and their developed baselines, i.e., StarMap,
NeMo, Res50-Gene and Res50-Spec. We briefly introduce
these methods in this section, and more details can be found
in [18].

StarMap [24] and NeMo [17] are two state-of-the-art su-
pervised approaches for 3D pose estimation. For NeMo, the
same single mesh cuboid is used as NVSM does. In addi-
tion, two baselines that formulate the object pose estimation
problem as a classification task are adopted. To be specific,
Res50-Gene formulates the pose estimation task for all cate-
gories as one single classification task, whereas Res50-Spec
learns one classifier per category.

All baselines are evaluated using a semi-supervised pro-
tocol in a common pseudo labeling strategy. Specifically, all
baselines are first trained on the annotated images and use
the pretrained models to label the unlabeled data by pseudo
labels. The final models are trained on both the annotated
data and the pseudo-labeled data.

A.2. Experiment Settings of BinghamMatch

In Table 3 of the main paper, we experiment our algo-
rithm based on the Bingham distribution B(M,Z), namely
BinghamMatch. We use the same experiment settings as
FisherMatch, except that we choose unit quaternion as our
rotation representation and use Bingham distribution for

†He Wang and Baoquan Chen are the corresponding authors ({hewang,
baoquan}@pku.edu.cn).

building the probabilistic rotation model. The rotation re-
gressor outputs the parameters of the Bingham distribution.
Specifically, following [4], the regressor outputs a 7-d vec-
tor (o1,o2) where the first 4-d vector o1 are first normalized
and used to construct the parameter M via Birdal Strategy

M(o1) ≜


o11 −o12 −o13 o14
o12 o11 o14 o13
o13 −o14 o11 −o12
o14 o13 −o12 −o11


and the last 3-d vector o2 are applied by softplus activation
and accumulation sum to construct the parameter Z, with

z1 = −ϕ (o21)

z2 = −ϕ (o21)− ϕ (o22)

z3 = −ϕ (o21)− ϕ (o22)− ϕ (o23)

where ϕ(·) is the softplus activation.

A.3. Implementation Details

We run all the experiments with the unsupervised loss
weight λu as 1. In the pre-training stage, we train with the
batch size of 32, and for the SSL stage, a training batch is
composed of 32 labeled samples and 128 unlabeled sam-
ples. Both the weak and strong augmentations consist of
random padding, cropping, resizing and color jittering (for
real-world images) operations with different strengths. On
ModelNet10-SO(3) dataset, we use MobileNet-V2 [8] ar-
chitecture following [3, 12]. We use the Adam optimizer
with the learning rate as 1e-4 without decaying. The entropy
threshold τ is set as around -5.3. On Pascal3D+ dataset, we
follow NVSM [18] to use ResNet [7] architecture pretrained
on ImageNet [5] dataset. We use the Adam optimizer with
the learning rate as 1e-4 in pre-training stage and 1e-5 in
the Semi-supervised training stage, without decaying. Due
to the extremely small amount of data, we find a large varia-
tion among experiments of different categories and #labeled
images on Pascal3D+ dataset, thus choose different confi-
dence thresholds in the SSL stage.



B. Review of Bingham Distribution and Matrix
Fisher Distribution

B.1. Unit Quaternion and Rotation Matrix

Unit quaternion and rotation matrix are two commonly
used representations for rotation elements from SO(3).
Unit quaternion q ∈ S3 is a double-covered representation
of SO(3), where q and −q represent the same rotation. Ro-
tation R ∈ R3×3 satisfies RTR = I and det(R) = +1. For
a quaternion q = [w, x, y, z], we use the standard transform
function γ to compute its corresponding rotation matrix:

γ(q) =

 1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2


The inverse transform γ−1 is

γ−1(R) =


√
1 +R00 +R11 +R22/2

(R21 −R12)/2
√
1 +R00 +R11 +R22

(R02 −R20)/2
√
1 +R00 +R11 +R22

(R10 −R01)/2
√
1 +R00 +R11 +R22


Note that we here only cover one hemisphere of S3.

B.2. Bingham Distribution

Bingham distribution [2, 6] is an antipodally symmetric
distribution. Its probability density function B : Sd−1 → R
is defined as

pB(q) = B(q;M,Z) =
1

F (Z)
exp

(
qTMZMTq

)
(1)

where M ∈ O(4) is a 4 × 4 orthogonal matrix and Z =
diag(0, z1, z2, z3) is a 4× 4 diagonal matrix with 0 ≥ z1 ≥
z2 ≥ z3. The first column of parameter M indicates the
mode and the remaining columns describe the orientation of
dispersion while the corresponding zi, (i ∈ 1, 2, 3) describe
the strength of the dispersion. F (Z) is the normalizing con-
stant.

Proposition 1. Given f ∼ B(M,Z), the entropy of Bing-
ham distribution is computed as

HB(f) = logF − Z
∇F

F
. (2)

Proof. Denote C = MZMT

HB(f) = −
∮
q∈S3

f(q) log f(q)dq

= −
∮
q∈S3

1

F
exp

(
qTCq

) (
qTCq− logF

)
dq

= logF − 1

F

∮
q∈S3

qTCq exp
(
qTCq

)
.

Writing f in standard form, and denoting the hyperspherical
integral by g(Z),

g(Z) =

∮
q∈S3

qTCq exp
(
qTCq

)
dq,

Then

g(Z) =

∮
q∈S3

4∑
i=1

zi
(
vT
i q
)2

exp

 4∑
j=1

zj
(
vj

Tq
)2dq

=

4∑
i=1

zi
∂F

∂zi
= Z · ∇F.

Thus, the entropy is logF − Z∇F
F

Proposition 2. Given f ∼ B(Mf ,Zf ) and g ∼
B(Mg,Zg), the cross entropy between Bingham distribu-
tions (f to g) is computed as

HB(f, g) = logFg−
4∑

i=1

zgi

b2i +

4∑
j=1

(
a2ij − b2i

) 1

Ff

∂Ff

∂zfj

 .

(3)
where aij is the entries of Â = MT

f Mg and bi is the entries
of b = µT

f Mg (µf is the mode of distribution f ).

Proof.

HB(f, g) = −
∮
q∈S3

f(q) log g(q)dq

= −
∮
q∈S3

f(q)

(
4∑

i=1

zgi
(
vT
giq
)
− logFg

)
dq

= logFg −
4∑

i=1

zgiEf

[(
vT
giq
)]

.

Since
[

A
bT

]
=

[
MT

f

µT
f

]
Mg and

[
MT

f

µT
f

]
is orthogo-

nal, Mg =
[
Mfµf

] [ A
bT

]
, so vgi = Mfai + biµf .

Thus,

Ef

[
vT
giq
]
= Ef

[((
Mfai + biµf

)T
q
)2]

= b2iEf

[(
µT

f q
)2]

+

4∑
j=1

a2ijEf

[(
vT
fjq
)2]

by linearity of expectation, and since all the odd projected
moments are zero. Since

Ef

[(
µT

f q
)2]

= 1−
4∑

j=1

Ef

[(
vT
fjq
)2]



and

Ef

[(
vT
fjq
)2]

=
1

Ff

∂Ff

∂zfj
,

then

H(f, g) = logFg−
4∑

i=1

zgi

b2i +

4∑
j=1

(
a2ij − b2i

) 1

Ff

∂Ff

∂zfj

 .

B.3. Matrix Fisher Distribution

Matrix Fisher distribution [9, 16] MF(R;A) is a prob-
ability distribution over SO(3) for rotation matrices, whose
probability density function is in the form of

pF (R) = MF(R;A) =
1

F (A)
exp

(
tr
(
ATR

))
(4)

where parameter A ∈ R3×3 is an arbitrary 3×3 matrix and
F (A) is the normalizing constant. The mode and dispersion
of the distribution can be computed from the singular value
decomposition of the parameter A. Assume A = USVT

and the singular values are sorted in descending order, the
mode of the distribution is computed as

R̂ = U

 1 0 0
0 1 0
0 0 det(UV)

VT

and the singular values S = diag(s1, s2, s3) indicates the
strength of concentration. The larger a singular value si is,
the more concentrated the distribution is along the corre-
sponding axis (the i-th column of mode R̂).

Entropy and Cross Entropy Given f ∼ MF(Af ) and
g ∼ MF(Ag), we can start with the definition,

HF (f) = −
∫
R∈SO(3)

f(R) log f(R)dR

and

HF (f, g) = −
∫
R∈SO(3)

f(R) log g(R)dR.

However, note the equivalence of matrix Fisher distribution
and Bingham distribution (see Section B.4), and doing inte-
grals over S3 (with 4 dimensions and 1 constraint) is easier
than that over SO(3) (with 9 dimensions and 6 constraints),
we first convert a matrix Fisher distribution to its equivalent
Bingham distribution, and compute the properties via the
formula of Bingham distribution.

Let pF be the pdf of a matrix Fisher distribution, and pB
be the pdf of its equivalent Bingham distribution. Based on
Eq. 8 and 18 in Section B.4, we have

HF (pF ) = −
∫
R∈SO(3)

pF log pFdR

= −
∮
q∈S3

2π2pB
(
log(2π2) + log(pB)

) 1

2π2
dq

= − log(2π2)

∮
q∈S3

pBdq−
∮
q∈S3

pB log dq

= HB(pB)− log(2π2).
(5)

And similarly,

HF (f, g) = HB(f, g)− log(2π2). (6)

B.4. Equivalence of Bingham Distribution and Ma-
trix Fisher Distribution

As discussed in [16], for a random rotation matrix vari-
able R, it follows a matrix Fisher distribution if and only
if its corresponding unit quaternion q = γ−1(R) (γ is de-
fined in Section B.1) follows a Bingham distribution, i.e.,
the matrix Fisher distribution is a reparameterization of the
Bingham distribution.

In this section, we derive the fact of the equivalence
of Bingham distribution and matrix Fisher distribution and
clarify the relationships between the various parameters.

In measure theory, the Lebesgue measure [21] assigns a
measure to subsets of n-dimensional Euclidean space, and
the Haar measure [20] assigns an “invariant volume” to
subsets of locally compact topological groups, in our case,
the Lie group SO(3). We define dq based on Lebesgue
measure and dR based on Haar measure.

Proposition 3. The scaling factor from unit quaternions to
rotation matrices is constant, and satisfies

dR =
1

2π2
dq (8)

Proof. Define S as the Lebesgue measure on S3 and T as
the Haar measure on SO(3). Generally we can write

T (dR) = α(q)S(dq)

where α(q) is the scaling factor from unit quaternions to
rotation matrices, or specifically,

T (dR1) = α(q1)S(dq1)

T (dR2) = α(q2)S(dq2)
(9)

Due to the invariance of measure S on S3, we have

S(dq1) = S(dq2) (10)



A = U1S
′VT

1 = U1

 1 0 0
0 1 0
0 0 det (U1)


︸ ︷︷ ︸

U

 s′1 0 0
0 s′2 0
0 0 det (U1V1) s

′
3


︸ ︷︷ ︸

S

 1 0 0
0 1 0
0 0 det (V1)


︸ ︷︷ ︸

VT

VT
1 = USVT (7)

Define ν as the mapping from S3 to SO(3), i.e., dR =
ν(dq). Define h as an element in S3 satisfying

hdq1 = dq2

we then induce ĥ = ν ◦ h ◦ ν−1 which is an element in
SO(3), which thus satisfies

ĥν (dq1) = ν (dq2)

Due to the invariance of measure T on SO(3) [20], we have

T (ĥν (dq1)) = T (ν (dq1)) = T (ν (dq2))

i.e.,
T (dR1) = T (dR2) (11)

Considering arbitrary dq1 and dq2, and based on Eq. 9, 10
and 11, we can derive that α(q) is a constant, i.e.,

dR = αdq. (12)

Known that the Haar measure is uniquely specified by
adding the normalization condition [20], we have∫

R∈SO(3)

dR = 1

and based on the definition of unit quaternions,∮
q∈S3

dq =
∣∣S3
∣∣ = 2π2

According to Eq. 12, we can derive that

dR =
1

2π2
dq

as claimed.

Let In be the n-dimensional identity matrix, and ϵi, i =
1, 2, . . . , n be the columns of In. Let Ei = 2ϵiϵ

T
i − I3, i =

1, 2, 3 and E4 = I3. Define Q(X) for a 3×3 rotation matrix
as

4Q(X) = 4xxT − I4 (13)

where x = γ−1(X). Apply proper singular value decom-
position [11, 14] to A as Eq. 7

A = USVT

where U and V are guaranteed to be rotation matrices and
S contains the proper singular values with s1 ≥ s2 ≥ |s3|.
Define T (A) for any real 3× 3 matrix A as

4T (A) =

4∑
i=1

ziQ(UEiV). (14)

Let z1, z2, z3, z4 denote the entries of Z and
m1,m2,m3,m4 denote the columns of M.

Proposition 4. Suppose the parameters satisfy the follow-
ing relationships

Z = 4T (S) (15)

mi = γ−1(UEiV
T ), i = 1, 2, 3, 4 (16)

and the inputs
R = γ(q),

matrix Fisher distribution is equivalent to Bingham distri-
bution with the relationship

tr(ART ) = qTMZMTq (17)

and
pF (R) = 2π2pB(q) (18)

Proof. Assume S = diag(s1, s2, s3) then we may write

4A =

4∑
i=1

ziUEiV
T

uniquely, with

z1 = s1 − s2 − s3

z2 = s2 − s1 − s3

z3 = s3 − s1 − s2

z4 = −z1 − z2 − z3.

Also, since 4Ei = 3Ei −
∑

j Ej , i ̸= j, Eq. 14
agrees with Eq. 13 on SO(3). Assmue γ(mi) =
UEiV

T , i = 1, 2, 3, 4, then mi are mutually orthogonal,
since tr

(
γ(mi)γ(mj)

T
)
= −1 if i ̸= j. Hence we may

write
4T (A) = MZMT



where Z = diag(z1, z2, z3, z4) has a zero trace and M =
(m1,m2,m3,m4) in SO(4). Note that

4T (S) = Z

and

4 tr(ART ) =

4∑
i=1

zi tr(UEiV
TRT ),

we have
tr(ART ) = qTMZMTq (19)

Due to the scaling factor from unit quaternions to rota-
tion matrices is constant (See Prop. 3), matrix Fisher dis-
tribution is equivalent to Bingham distribution. Based on
Eq. 19 and 8, and the conservation of the total probability,
it can be shown that

pF (R) = 2π2pB(q)

as claimed.

Note that the proposition can also be verified by the re-
lationships between the normalization constant FB(Z) and
FF (A). As discussed in [4,11,14], when Z satisfies Eq. 15,
the constant

FB(Z) =

∮
q∈S3

exp
(
qTMZMTq

)
dq =

∣∣S3∣∣ 1F1

(
1

2
, 2,Z

)
= 2π2

1F1

(
1

2
, 2,Z

)
and

FF (A) =

∫
R∈SO(3)

exp
(
tr
(
ATR

))
dR = 1F1

(
1

2
, 2,Z

)
where 1F1(·, ·, ·) is the generalized hypergeometric function
[10] of a matrix argument. So

FF (Z) =
1

2π2
FF (A).

Considering Eq. 19, we have

pF (R) = 2π2pB(q)

B.5. Normalization Constant of Matrix Fisher Dis-
tribution

We follow [14] to compute the normalization constant.
As pointed in [11], the normalizing constant of matrix
Fisher distribution can be expressed as a one dimensional
integral over Bessel functions as

c(S) =

∫ 1

−1

1

2
I0

[
1

2
(si − sj) (1− u)

]
× I0

[
1

2
(si + sj) (1 + u)

]
exp (sku) du

and

∂c(S)

∂si
=

∫ 1

−1

1

4
(1− u)I1

[
1

2
(si − sj) (1− u)

]
× I0

[
1

2
(si + sj) (1 + u)

]
exp (sku)

+
1

4
(1 + u)I0

[
1

2
(si − sj) (1− u)

]
× I1

[
1

2
(si + sj) (1 + u)

]
exp (sku) du

∂c(S)

∂sj
=

∫ 1

−1

−1

4
(1− u)I1

[
1

2
(si − sj) (1− u)

]
× I0

[
1

2
(si + sj) (1 + u)

]
exp (sku)

+
1

4
(1 + u)I0

[
1

2
(si − sj) (1− u)

]
× I1

[
1

2
(si + sj) (1 + u)

]
exp (sku) du

∂c(S)

∂sk
=

∫ 1

−1

1

2
I0

[
1

2
(si − sj) (1− u)

]
× I0

[
1

2
(si + sj) (1 + u)

]
u exp (sku) du

for any (i, j, k) ∈ I.
We approximate this integral using the trapezoid rule,

where in experiments, 511 trapezoids are used. We use stan-
dard polynomials to approximate the Bessel function using
Horner’s method.

Please see Section 5 of [14]’s supplementary for more
details.

C. More Experiment Results
C.1. Results on ModelNet10-SO(3) Dataset with

100% Labeled Data

Although out of the scope of semi-supervised learning,
following [13, 19], we also report the results on 100% la-
beled data on ModelNet10-SO(3) dataset, where we simply
make a copy of the full training data as unlabeled data and
train our model. All the other settings are kept the same as
Table 1 in the main paper.

As shown in Table 1, our proposed FisherMatch is able
to further encourage a better performance with 100% la-
beled data compared with the supervised learning and con-
sistently outperforms other baselines. The results further
demonstrate the importance of filtering high-quality pseudo
labels even with much training data. The improvements can
be seen as a result of label smoothing [23].



Table 1. Comparing our proposed FisherMatch with the base-
lines on ModelNet10-SO(3) dataset under 100% labeled data.

Category Method 100%
Mean↓ Med.↓

Sofa

Sup.-L1 19.28 6.64
Sup.-Fisher 18.62 5.77
SSL-L1-Consist. 17.18 5.27
SSL-FisherMatch 14.37 4.32

Chair

Sup.-L1 17.65 7.48
Sup.-Fisher 17.38 6.78
SSL-L1-Consist. 14.78 6.19
SSL-FisherMatch 13.01 5.35

Table 2. Comparing our proposed FisherMatch with the base-
lines on Objectron dataset with 1% labeled data.

Category Method 1%
Mean↓ Med.↓

Bike

Sup.-L1 53.6 21.2
Sup.-Fisher 51.2 24.0
SSL-L1-Consist. 38.0 14.3
SSL-FisherMatch 36.0 13.8
Full sup. 26.7 9.7

Camera

Sup.-L1 46.0 22.8
Sup.-Fisher 39.0 18.7
SSL-L1-Consist. 40.9 19.0
SSL-FisherMatch 33.6 15.9
Full sup. 24.4 9.5

C.2. Experiments and Results on Objectron Dataset

Dataset Objectron [1] is a newly-introduced dataset cap-
tured in the real world. The dataset contains a collection of
short, object-centric video clips, as well as the correspond-
ing camera poses, sparse point clouds, and manually anno-
tated 3D bounding boxes for each object.

In this experiment, we mainly focus on the bike and
camera categories which exhibit more rotational varia-
tions and less rotational symmetries in the dataset [1]. Since
the real-world images are mostly captured from limited
viewpoints, we found a smaller generalization gap between
the train/test data. Thus, we choose a more challenging sce-
nario to only adopt 1% labeled data to train the network.
We adopt the official train-test split of the dataset, where
we grab all the frames of the training videos and uniformly
sample 10% frames from the test videos. We further divide
the training split into the labeled set with ground truth and
the unlabeled set without ground truth.
Data preprocessing To leverage this dataset for ob-
ject pose regression, we need to obtain the paired data,
i.e., object-centered images with their corresponding ob-
ject poses. We thus first project the eight corners of 3D
bounding box annotations onto the 2D image plane, fit a
minimum 2D square bounding box covering all the pro-
jected corners, and finally crop the image with the fitted 2D
bounding box. To avoid the naive cropping-resizing flaws

(a) diag(5, 5, 5) (b) diag(20, 20, 20) (c) diag(20, 1, 1)

Figure 1. Visualization of the pdf of matrix Fisher distribution
with jet color-coding. The captions below the plots indicate the
parameter A of the distribution.

(a) diag(5, 5, 5) (b) diag(20, 20, 20) (c) diag(20, 1, 1)

Figure 2. Visualization of the pdf of matrix Fisher distribution
with the visualization method proposed in Implicit-PDF [15]. The
captions below the plots indicate the parameter A of the distribu-
tion.

pointed out in [14], we directly crop square images to meet
the shape requirement of the network. We pad the images
with a black background to cover the out-of-plane projected
keypoints and images with more than 4 (out of 8) keypoints
out of the image plane are discarded. To obtain the ground-
truth object poses, we compute the rotation of the annotated
3D object bounding box wrt. the box with the same size in
the canonical orientation.
Experiment settings The baselines, evaluation metrics
and implementation details are the same as experiments on
ModelNet10-SO(3) dataset.
Results The results are shown in Table 2. Our Fisher-
Match significantly increases the regression performance
even with a really low labeled data ratio, further demon-
strating the efficiency of our model.

D. Visualization of Matrix Fisher Distribution

Visualizing matrix Fisher distribution is non-trivial over
SO(3). Following [11, 14], we visualize the probabilistic
distribution function via color-coding on the sphere.

Remember that for the parameter A in matrix Fisher dis-
tribution, the singular values indicate the strength of con-
centration. The larger a singular value si is, the more con-
centrated the distribution is along the corresponding axis.
Fig 1 shows three distributions with the same mode as the
identity matrix, differing only in the strength of concentra-
tion. For both (a) and (b), the distributions of each axis are
identical and circular, while the distribution in (b) is more
concentrated than (a). In (c), the distribution is more con-
centrated in x-axis, and the distributions for the other two
axes are elongated.



Implicit-PDF [15] proposes a new visualization method
to display distributions over SO(3) by discretizing SO(3)
with the help of Hopf fibration [22]. It projects a great circle
of points on SO(3) to each point on the 2-sphere and uses
the color wheel to indicate the location on the great circle.
We re-draw Figure 1 with this visualization in Figure 2.
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